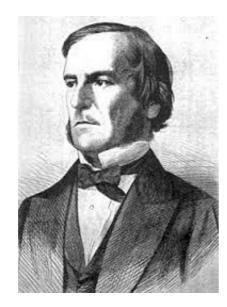
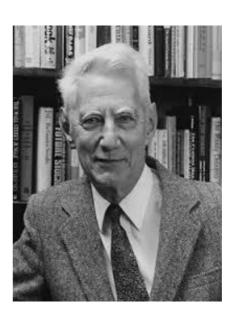


MINISTÉRIO DA EDUCAÇÃO


SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO
DISCIPLINA: ELETRÔNICA DIGITAL

PRINCÍPIO BOOLEANO E PORTAS LÓGICAS



Princípio Booleano

- √ Álgebra Booleana → Sistema matemático de "Análise Lógica";
- ✓ Desenvolvida no século XIX pelo matemático inglês George Boole;
- ✓ Dois estados: Falso (0) ou verdadeiro (1);
- ✓ Século XX Claude Elwood sugeriu a aplicação em circuitos elétricos.

George Boole (1815 - 1864)

Claude Elwood (1916 - 2001)

Princípio Booleano

✓ Em função dos valores que as variáveis booleanas (A, B, C, X, Y, Z ...) podem assumir, existem três operações básicas:

1º → Produto booleano:

XeY

X and Y

XΛΥ

X . **Y**

2º → Soma booleana:

X ou Y X or Y

XΥΥ

X + **Y**

3º → Negação ou complemento booleano:

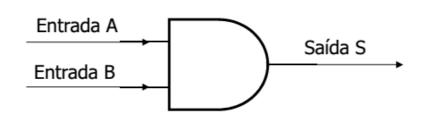
não X

not X

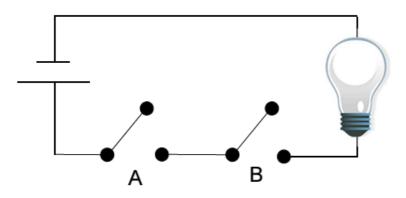
¬ X

Princípio Booleano

✓ Como representar um circuito digital?

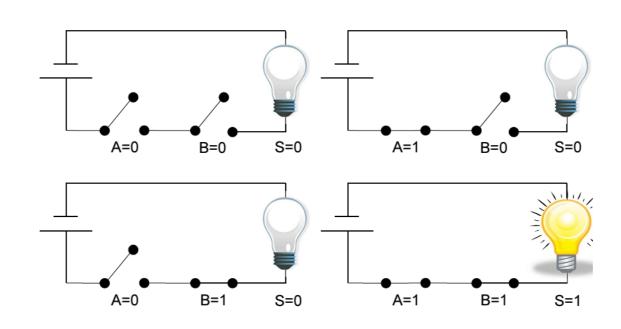

Portas Lógicas!

- ✓ Componentes básicos da eletrônica digital;
- ✓ Analisam um conjunto de entradas (estados) e produzem uma única saída;
- ✓ 3 funções básicas, correspondendo as operações básicas: E, OU, NÃO.


✓ Multiplicação entre as entradas:

Só duas entradas? Só uma saída?

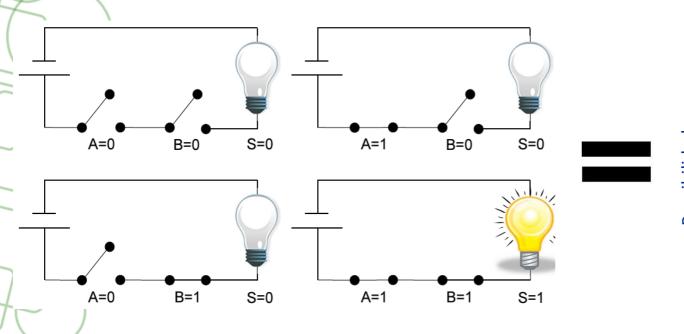
→ Várias entradas mas somente uma única saída!


Circuito elétrico equivalente com duas entradas conectadas em SÉRIE.

Quantas possibilidades?

✓ Quatro possibilidades diferentes:

S = A.B


Possibilidades = 2ⁿ

- \checkmark n = Número de entradas (interruptores);
- ✓ Surgimento de novas formas de representação.

✓ Representação da Função Lógica:

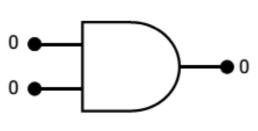
Circuito Elétrico:

Tabela Verdade:

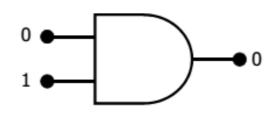
		Α	В	A.B
des		0	0	0
Possibilidades		0	1	0
Possi		1	0	0
4		1	1	1
Nº de entradas				

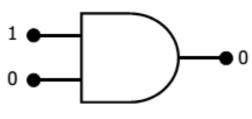
Expressão Booleana:

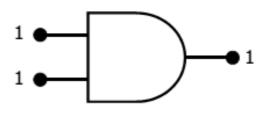
$$S = A.B$$


Tabela Verdade

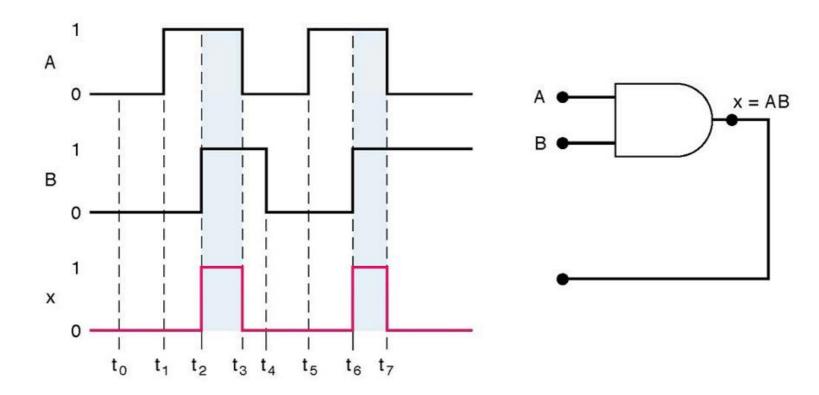
 ✓ Tabela Verdade → Corresponde a uma representação tabular, permitindo uma visão completa do comportamento da função:


Variá	veis d	le enti	rada	Fun	ções d	de saída					
Х	Υ	Z		F ₁	F_2	F_3	_		Tabela V	/erdade	da AND:
	S	3			2				А	В	A.B
	açõe.	2			s pa o de			ıdes	0	0	0
	combinaçõe	da			unçõe inaçã	das		Possibilidades	0	1	0
					– ਕੁ	ro o		Possi	1	0	0
		9							1	1	1
	Todas a				Valores cada				Nº de ent	radas	

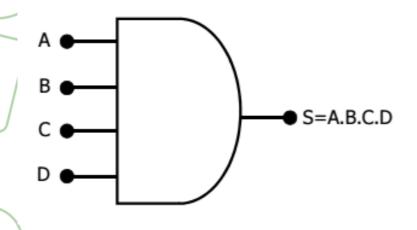

✓ Representação da Função Lógica:


Α	В	S=A.B
0	0	0
0	1	0
1	0	0
1	1	1

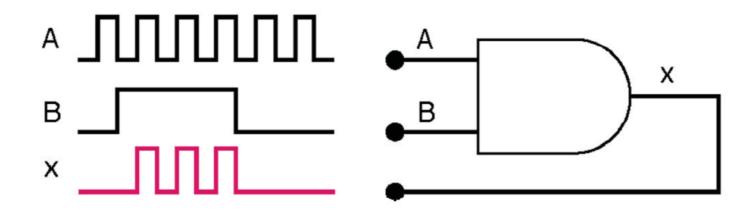
Α	В	S=A.B
0	0	0
0	1	0
1	0	0
1	1	1
	0 0 1	0 0


Α	В	S=A.B
0	0	0
0	1	0
1	0	0
1	1	1

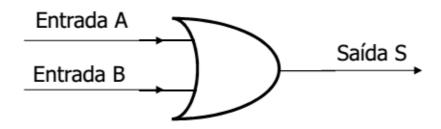
	Α	В	S=A.B
	0	0	0
1	0	1	0
	1	0	0
	1	1	1



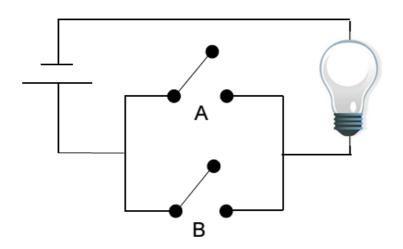
✓ Exemplo: Considere que os diagramas de tempo abaixo correspondem às entradas A e B da porta lógica AND. Acompanhe como será a saída X obtida.


✓ Representação da Função Lógica para mais de 2 entradas:

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1
				l

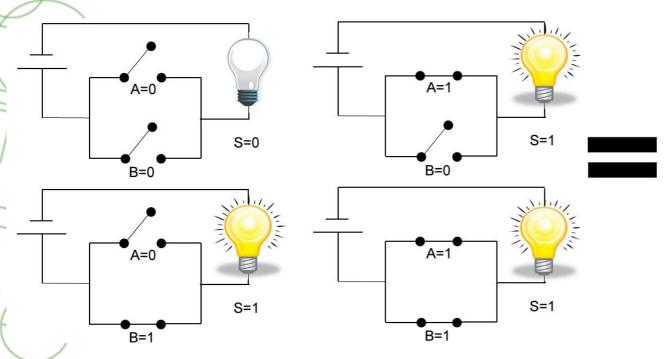


 ✓ Exemplo: Considere que os trens de pulso abaixo correspondem às entradas A e B da porta lógica AND. Acompanhe como serão as saídas obtidas.



✓ Soma entre as entradas:

✓ Circuito elétrico equivalente com duas entradas conectadas em PARALELO.



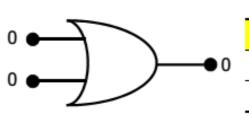
Quantas possibilidades?

✓ Representação da Função Lógica:

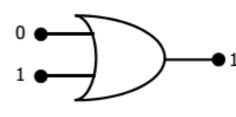
Circuito Elétrico:

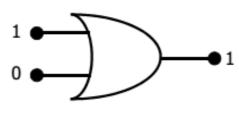
Tabela Verdade:

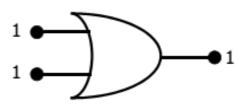
Α	В	A+B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		
	\rightarrow			
Nº de entradas				


Possibilidades

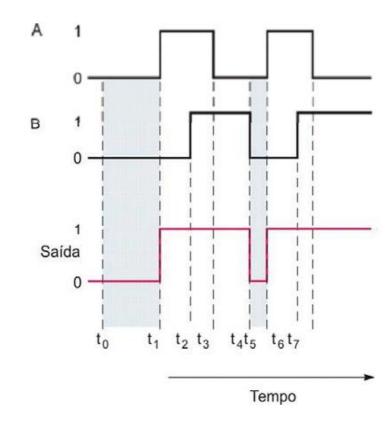
Expressão Booleana:

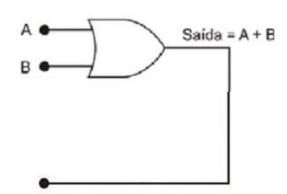

$$S = A + B$$


✓ Representação da Função Lógica:


Α	В	S=A+B
C	0	0
C	1	1
1	0	1
1	1	1
		•

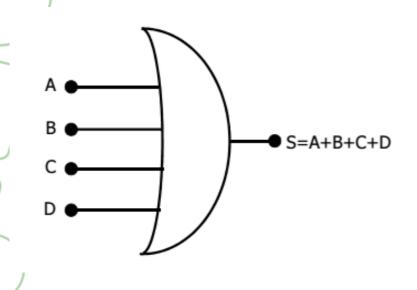
	Α	В	S=A+B
	0	0	0
1	0	1	1
	1	0	1
	1	1	1


	Α	В	S=A+B
,	0	0	0
,	0	1	1
	1	0	1
	1	1	1

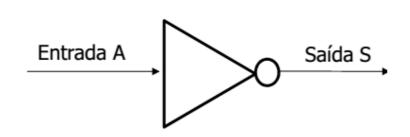


	Α	В	S=A+B
	0	0	0
L	0	1	1
	1	0	1
	1	1	1

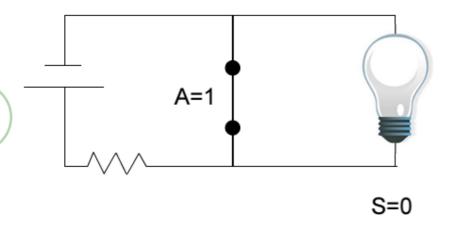
✓ **Exemplo**: Considere que os trens de pulso abaixo correspondem às entradas A e B da porta lógica OR. Acompanhe como será a saída obtida.



Porta Lógica OR (OU)

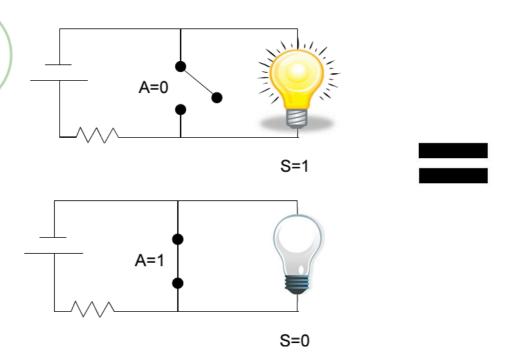

✓ Representação da Função Lógica para mais de 2 entradas:

A	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

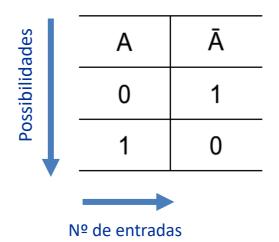


✓ Negação de uma entrada:

✓ Circuito elétrico equivalente:


Quantas possibilidades?

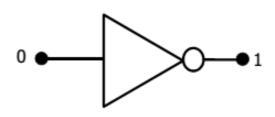
$$2^1 = 2$$



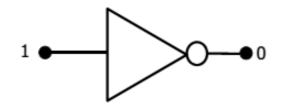
✓ Representação da Função Lógica:

Circuito Elétrico:

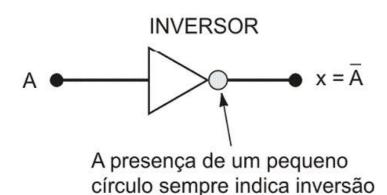
Tabela Verdade:

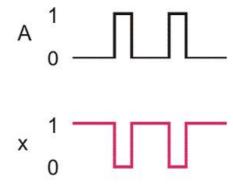


Expressão Booleana:


$$S = \bar{A}$$

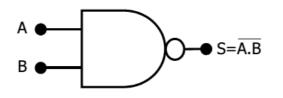
✓ Representação da Função Lógica:


Α	S=Ā
0	1
1	0

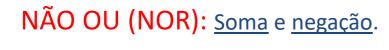


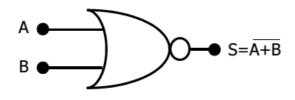
Α	S=Ā
0	1
1	0

✓ Exemplo: Considere que o trem de pulso abaixo corresponde a entrada A
 da porta lógica NOT. Acompanhe como será a saída obtida.



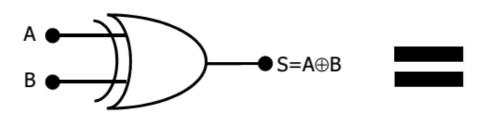
Funções Lógicas Derivadas


✓ Executam funções mistas:


NÃO E (NAND): Multiplicação e negação.

Α	В	S=A.B
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	S=A+B
0	0	1
0	1	0
1	0	0
1	1	0



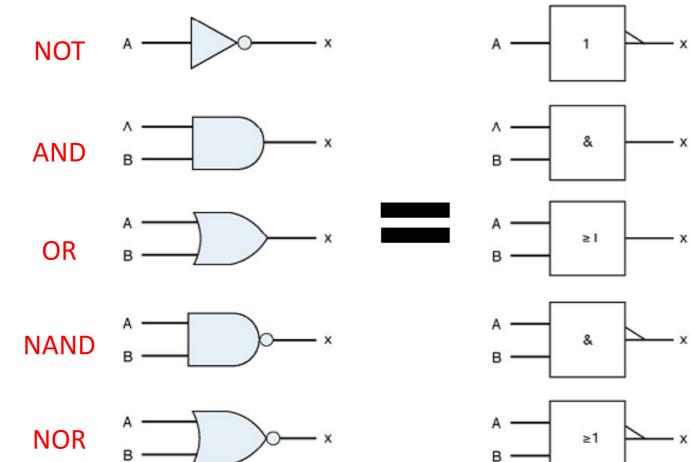
Funções Lógicas Derivadas

✓ Executam funções mistas:

OU EXCLUSIVA (XOR): Saída 1 quando as entradas forem diferentes entre si;

Α	В	S=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

As simbologias podem mudar?



Simbologia Diferenciada

✓ Padrões internacionais:

IEEE/ANSI:

