
Secure and Provable Service Support for Human-Intensive
Real-Estate Processes

Emerson Ribeiro de Mello,∗ Savas Parastatidis,† Philipp Reinecke,‡

Chris Smith,§ Aad van Moorsel, Jim Webber¶

Abstract

This paper introduces SOAR, a service-oriented archi-
tecture for the real-estate industry that embeds trust and se-
curity, allows for formal correctness proofs of service in-
teractions, and systematically addresses human interaction
capabilities through web-based user access to services. We
demonstrate the features of SOAR through a DealMaker
service that helps buyers and sellers semi-automate the var-
ious steps in a real-estate transaction. This service is a com-
posed service, with message-based interactions specified in
SSDL, the SOAP service description language. The imple-
mented embedded trust and security solution deals with the
usual privacy and authorization issues, but also establishes
trust in ownership and other claims of participants. We also
demonstrate how formal techniques can proof correctness
of the service interaction protocol specified in SSDL. From
an implementation perspective, a main new contribution is
a protocol engine for SSDL. A proof-of-concept demonstra-
tion is accessible for try-out [1].

1. Introduction

The real-estate industry is slowly but surely moving to-
wards Internet-based solutions to support various aspects
of their business. The currently pursued approaches (e.g.,

∗ Emerson Ribeiro de Mello is with Federal University of Santa Cata-
rina, Departamento de Automacao e Sistemas, Florianopolis, Brasil,
emerson@das.ufsc.br .

† Savas Parastatidis is with Microsoft, Redmond, USA,
savas@parastatidis.name .

‡ Philipp Reinecke is with Humboldt-Universität
Berlin, Institut f̈ur Informatik, Berlin, Germany,
preineck@informatik.hu-berlin.de .

§ Chris Smith and Aad van Moorsel are with Newcastle Univer-
sity, School of Computing Science, Newcastle upon Tyne, UK,
{c.j.smith4,aad.vanmoorsel }@newcastle.ac.uk .

¶ Jim Webber is with ThoughtWorks, Sydney, Australia,
jim@webber.name .

[10]) utilise web sites to make it easier to share and dis-
cover information about properties for sale, or mortgage
rates offered. In addition, XML-based standards are emerg-
ing [5, 7, 9, 11] that support the interaction between various
players (and the software packages they use), including real
estate agents and mortgage lenders ([14], see for more de-
tails [2]). Although these are good initial steps, the nature of
real estate business is such that it could benefit in novel and
interesting ways from more advanced service-oriented ap-
proaches to business-to-consumer and business-to-business
interactions.

The objective of our work is to demonstrate how busi-
nesses and individuals can rapidly create profitable real-
estate Internet services that are provably secure and cor-
rect. To that end we introduce SOAR, a Service-Oriented
Architecture for the Real-estate industry. Figure 1 depicts
SOAR at a high level. The main idea is that all participants
in various transactions are represented by services: seller
services, lawyer services, buyer services, surveyor services,
etc. Services can be accessed by non-expert users through
web pages for creation, configuration and termination. A
service portal creates service instances when requested by
users, and hosts these instances. New services can then be
introduced by defining service interaction protocols in the
SOAP Service Description Language and the resulting com-
posed service can be model-checked against various live-
ness and deadlock properties, and has embedded a trust and
security solution to ensure privacy, identity and validity of
user claims.

This paper describes ten weeks of work for the 2006 ser-
vices computing contest of the International Conference on
Web Services, from conception of the business case, to de-
sign of SOAR and the implementation of the DealMaker
service. The following items are our main contributions:

• we created a business case for service-oriented com-
puting for the real-estate industry, both for SOAR por-
tals in general and for the DealMaker service in par-
ticular. We also argue for a possible role of standard-
isation bodies to successfully introduce SOAR in the



seller portal

lawyer
portal

mortgage 
portal

deal
making

portal

seller instances

lawyer
instances

mortgage instances

register
a representing 

serviceoutsource
deal-making
processes

utilise other servicesInternet Internet 

registration

registration

registration

registrationdeal-
making
instance

Figure 1. SOAR services landscape.

diverse real-estate industry (Section 2).

• we designed the SOAR architecture, with each service
configurable through a web site, and personalised ser-
vice instances hosted by a service provider, see Sec-
tion 2.

• we suggested, designed and implemented a potential
service supported by SOAR through the DealMaker
service (Section 3.1).

• we embedded a security solution within SOAR to
guarantee privacy, identity and to validate user claims
(Section 3).

• we proved correctness (with respect to the absence of
starvation and race conditions) of the DealMaker ser-
vice using the sequence constraints approach to pro-
tocol specification in SSDL described in Section 4.

• we implemented the DealMaker services (Section 5)
and made it accessible through a demonstration web
site ([1]).

• we designed and implemented an important new tool
for the use of SSDL in managing service interaction
protocols, namely an SSDL protocol execution engine
(Section 5.2).

Finally, an associated technical report [2] provides more de-
tails about the topics listed above, in particular with respect
to the business case and the web site, and adds some reflec-
tions to our contest participation.

2. SOAR Basic Architecture

In this section we describe the main features of SOAR:
basic service design, service hosting portals and person-
alised service instances. We also introduce the DealMaker
service. First, we provide the following definitions used
throughout the paper:

service instancemessage 
interface

web page
representation

Figure 2. Service: message interfaces and
web page representation.

• service instance(also justservice), see Figure 2: a
run-time accessible service representation adhering
to theabstract service definitionof a particularser-
vice type. Service instances contain accessibleservice
properties, which are stored as name-value pairs. Our
security solution will provide access control at the
property level.

• service instance creation(also justservice creation):
a service providerallows users tocreate(and subse-
quently parameterise and terminate) service instances,
for the service types the provider supports. (One can
think of this kind of service instance creation as the
service equivalent of ’myYahoo’ etc.)

• participant: any party involved in the system, such as
lawyers, surveyors, buyers and sellers, etc., as well
as the logical service representation of these parties
within the system. In addition to participants,activ-
ities can also be represented by a service instance–
example activities are drafting a contract or setting up
a meeting.

In SOAR, every participant is represented by a service
instance. This service contains data about the participant,
and presents a messaging interface definition. The message
interface allows the data to be accessed, but also allows
more advanced interactions, such as ordering or stepping
through stages of a workflow. The specifics of the inter-
face definition are different for each service and adhere to
the abstract services definition for the particular participant
type. Newly introduced composed services follow the same
architectural design as the core services representing par-
ticipants (depicted in Figure 2). That is, personalised ser-
vice instances can be created and there is web page based
user access to the service instances. To avoid inputting large
amounts of redundant data, each service can decide to ac-



1 <?xml version =" 1.0 " encoding= " UTF-8 " ?>
2 <ssdl:protocol targetNamespace= " http: // www. ncl . ac . uk / DealMakingService / ContractExchange / protocol "

xmlns:msgs= " http: // www. ncl . ac . uk / DealMakingService / ContractExchange / messages " xmlns:sc= "
urn:ssdl:protocol:sc " xmlns:ssdl= " urn:ssdl:v1 " >

3 <sc:sc>
4 <! -- Message Exchange Protocol -- >
5 <sc:protocol name= " Buy_Sell_Protocol " >
6 <sc:sequence>
7 <sc:protocolref ref= " MortgageOrganiseProtocol " ></sc:protocolref>
8 <sc:protocolref ref= " ViewingOrganizeProtocol " ></sc:protocolref>
9 <sc:protocolref ref= " LawyerRegisterProtocol " ></sc:protocolref>

10 <sc:protocolref ref= " SearchProtocol " ></sc:protocolref>
11 <sc:protocolref ref= " PriceNegotiationProtocol " ></sc:protocolref>
12 <sc:parallel>
13 <sc:protocolref ref= " ValuationProtocol " ></sc:protocolref>
14 <sc:protocolref ref= " SurveyProtocol " ></sc:protocolref>
15 </sc:parallel>
16 <sc:protocolref ref= " LifeAssuranceProtocol " ></sc:protocolref>
17 <sc:protocolref ref= " MortgageConfirmationProtocol " ></sc:protocolref>
18 <sc:protocolref ref= " ContractExchangeProtocol " ></sc:protocolref>
19 </sc:sequence>
20 </sc:protocol>
21 </sc:sc>
22 </ssdl:protocol>

Figure 3. SSDL specification of the protocol followed by the DealMaker service.

cept parameterisation referring to other service instances.
For example, a DealMaker service can be used by a buyer
to create an instance that is parameterised with the service
instances representing the buyer’s lawyer, etc.

Every service instance contains a web page representing
the service instance, and a set of message interfaces speci-
fied in SSDL (in the implementation this is translated into
WSDL documents, see Section 5). The service instance exe-
cutes within a run-time environment–by default, we assume
that the service instances are hosted by the service provider.
We imagine service providers for sellers, buyers, lawyers,
etc., or combinations thereof, see Figure 1. Alternatively,
participants host their own service instances, which adhere
to the message interface definition for the particular abstract
service.

Figure 1 gives an idea about the landscape of real-estate
services we envision. We envision portals to emerge for var-
ious participant types, for instance for lawyers, mortgage
companies, buyers, sellers, etc. It is very well possible that
one portal supports more than one participant type. For in-
stance, one can imagine a portal where sellers as well as
buyers register. As we discuss from the business angle in
[2], the portal plays a key role in bootstrapping the SOAR
landscape. Participants register with their respective portals,
and the portals create service instances for the registrants. In
Figure 1, we therefore include the box ‘Registration’, which
not only indicates an opportunity to register, but also im-
plies the ensuing process of service instance creation. The
portal also provides the run-time environment to host the
service instances, as indicated by the instance boxes at the
various portals.

There is a number of services one can think of that ex-
ploit SOAR. In [2] we discuss them in increasing order of
complexity. There we also discuss the business case behind
such services as well as behind SOAR itself.

3. Trust and Security Architecture

3.1. The DealMaker Service

The DealMaker service is a complex service that demon-
strates the abilities of SSDL, its associated formal proof sys-
tem, and our security model. The DealMaker service helps
customers to go through the steps involved in buying and
selling real-estate. We have taken the process example from
[4]. The service can be instantiated by any party, but for
the sake of this explanation, we assume the buyer initiated
the creation of a DealMaker service instance. At initialisa-
tion, it will be parameterised with the necessary information
about parties involved in the deal making, such as lawyers,
mortgage providers, surveyors, etc. Then, it goes through
the process steps. To get an idea about the operation of
the DealMaker service, it is probably simplest to read the
SSDL specification of the DealMaker service given in Fig-
ure 3. The main protocol, namedBuy Sell Protocol ,
contains a sequence of steps, each referring to another pro-
tocol: organising the mortgage, organise property viewing,
add lawyer information, price negotiation protocol, etc. The
stages corresponding to valuation and surveying can be ex-
ecuted in parallel, as one can see in Figure 3. At the end of
the process, the contract gets exchanged.

We note that the DealMaker service does not attempt to
completelyautomate stages of a business process. On the



1 <?xml version =" 1.0 " encoding= " UTF-8 " ?>
2 <ssdl:protocol targetNamespace= " http: // www. ncl . ac . uk / DealMakingService / MortgageOrganise / protocol "

xmlns:msgs= " http: // www. ncl . ac . uk / DealMakingService / MortgageOrganise / messages " xmlns:sc= "
urn:ssdl:protocol:sc " >

3 <sc:sc>
4 <! -- Parties In Mortgage Organise Protocol -- >
5 <sc:participant name= " Buyer " />
6 <sc:participant name= " MortgageLender " />
7 <! -- Message Exchange Protocol -- >
8 <sc:protocol name= " MortgageOrganiseProtocol " >
9 <sc:sequence>

10 <sc:choice>
11 <sc:sequence>
12 <ssdl:msgref ref= " msgs:MortgageRequestSubmission " direction= " in " sc:participant= "

Buyer " />
13 <ssdl:msgref ref= " msgs:MortgageRequestTemplate " direction= " out " sc:participant= "

MortgageLender " />
14 <ssdl:msgref ref= " msgs:MortgageRequestCompletedTemplate " direction= " in "

sc:participant= " Buyer " />
15 <sc:choice>
16 <sc:sequence>
17 <ssdl:msgref ref= " msgs:MortgageRequestAccepted " direction= " out " sc:participant=

" MortgageLender " />
18 </sc:sequence>
19 <sc:sequence>
20 <ssdl:msgref ref= " msgs:MortgageRequestRejected " direction= " out " sc:participant=

" MortgageLender " />
21 </sc:sequence>
22 </sc:choice>
23 </sc:sequence>
24 <sc:nothing />
25 </sc:choice>
26 </sc:sequence>
27 </sc:protocol>
28 </sc:sc>
29 </ssdl:protocol>

Figure 4. SSDL specification of the protocol followed in the mortgage organisation step.

contrary, the assumption is that the human stays involved
at all time, and many of the individual protocol steps given
in Figure 3 contain status update messages sent to the right
parties at the right time to assure completion of the over-
all process. The human then has to act on these messages
for theBuy Sell Protocol to continue, and ultimately
complete. In Figure 4 we display the details of the mortgage
organisation protocol as an SSDL specification. It has two
participants involved, the buyer and the mortgage lender.
When the seller initiates the creation of a DealMaker ser-
vice instance, it parameterises the service instance by pro-
viding buyer and lawyer information. Importantly, it does
not just provide a name, but a reference to the service rep-
resenting the buyer and lawyer.

The service provider that hosts DealMaker services man-
ages the interaction given in the SSDL specification of the
DealMaker service. To that end, an SSDL protocol en-
gine runs at the service provider. It tracks how far the
process is along, and initiates next steps as appropriate. The
SSDL protocol execution engine is further discussed in Sec-
tion 5.2.

The SOAR architecture requires solutions for common
security issues such as authentication, privacy, etc., which

we discuss in Section 3.2. However, of more specific inter-
est to SOAR is the issue of achieving trust about claims
of unknown participants in a transaction, such as about
home ownership or professional credentials. We designed
a SAML-based trust solution for participant claims, which
we discuss in Section 3.3.

3.2. Authorization, Confidentiality and Integrity

The communication among services and between ser-
vices and web users is done using SSL, providing basic se-
curity properties such as confidentiality and integrity. The
assumption is that all service providers have acquired X.509
certificates, issued by a valid CA. However, SSL alone is
not sufficient for identification, authentication and autho-
rization within services instances. Therefore, our security
model uses SAML assertions [6] to provide identity as well
as authenticity in message exchanges. The authorization is
done by a role-based access control [3] mechanism, where
“roles” and “rights” are provided through SAML attribute
assertions. With SAML we establish a standardized way to
share credentials and an easy way to include new services
or users into the system.



1 <policy>
2 <resource id= " lawyer " defaultAction= " deny " >
3 <allow>
4 <role id= " dmi:ID648s5e2:participant " />
5 <role id= " dmi:ID24n256s:participant " />
6 </allow>
7 </resource>
8 </policy>

Figure 5. Access control policy.

Service instances may have various properties that need
to be protected. For instance, a seller may only be willing
to share information about his/her lawyer with participants
that are trying to close a deal, i.e., with services that are
in same DealMaker service instance. Hence, when a new
DealMaker service instance is created, each participant of
this instance will receive a SAML attribute assertion (a role,
e.g.,dmi:ID648s5e2:participant ), indicating that
they are allowed to access “protected properties”. The de-
fault access control policy defines restrictions to some ser-
vice properties, and this policy is then updated to reflect new
service instances. For illustration, Figure 5 presents a small
piece of our access control policy.

We also want to be able to hide the identity of the ‘real
person’ that is behind a SOAR participant. In our model, the
real identity of a person will be known only by the particu-
lar portal the service is created with. To other participants,
a person’s identity will always be obfuscated by referring to
the person through a service identifier.

3.3. Trusted Claims

In SOAR, individual participants could make unsubstan-
tiated claims about ownership of properties, etc. In real life
we can often easily enhance trust in such claims (such as
ownership of a house) by paying a personal visit or search-
ing government archives to check if the supplied claim is
true or not. However, in the virtual world of SOAR, ser-
vices are often not in a position to make judgment calls
about the validity of a participant claim, possibly simply
because no humans are available with the right expertise.
To protect SOAR from illegitimate usage, we use a trusted
third party that is able to corroborate the claim of a partici-
pant. We can think for instance of a government institution
being able to issueclaim tokensthat substantiate the claims
about the ownership of a real-estate property made by a par-
ticular seller.

For example, before the creation of a service instance
that offers a house for sale to all SOAR participants, the
seller needs to supply house details and a claim token is-
sued by some claim-issuing institution, indicating that the
house details can be trusted. Let us assume that the seller
goes in person to a government institution to show a “legal
document” indicating ownership of his/her house. The gov-

ernment then gives the seller a claim token that the seller can
forward to other SOAR participants, who then can check the
validity of the claim token at the claim issuer web service.

In the demo we apply the idea of claim tokens to proper-
ties associated with a potential buyer that chooses to make
use of the DealMaker service. Our implementation, based
on SAML assertions, provides a flexible and user-friendly
way for participants to either obtain or check claim tokens.
We think that trusted claims provide a level of trust through-
out the SOAR architecture that may greatly enhance the
willingness of participants to carry out business interactions
through SOAR services.

4. SSDL and Formal Correctness
Proof

The DealMaker service constitutes a particularly com-
plex orchestration of service interactions. The complex na-
ture of the interactions makes one question the correctness
of the overall process. In order to validate the correctness,
we derive aπ–calculus specification from the SSDL spec-
ification, and validate the resulting model formally. The
way this can be done has been described in [8], and we
briefly summarise the main points of this approach to cor-
rectness validation. First we introduce SSDL, closely fol-
lowing [8, 12].

The SOAP Service Description Language (SSDL) is a
SOAP-centric contract description language for Web Ser-
vices. The SOAP Service Description Language provides
the base framework for a range of protocol description
frameworks which at one end of the spectrum can be a sim-
pler, SOAP-focused, direct replacement for WSDL message
exchange patterns while at the other end of the spectrum can
enable formal validation and reasoning about the protocols
that a Web Service supports. SOAP is the standard mes-
sage transfer protocol for Web Services. However, the de-
fault description language for Web Services (WSDL) does
not explicitly target SOAP but, instead, provides a generic
framework for the description of network-exposed software
artifacts. Another important feature of SSDL is the abil-
ity to specify multi-party protocols that are considerably
more complex than the simple message exchange patterns
allowed in WSDL. In SOAR we utilise the sequencing con-



straint manner of specifying protocols, which makes the en-
suing protocol amenable to formal correctness verification.

Figure 3 and Figure 4 illustrate the use of the sequenc-
ing constraint protocol definition (the sequencing constraint
schema is specified in the namespace ending withsc ). The
use of sequencing constraints results in a protocol that can
be formally expressed in terms ofπ–calculus, thus allow-
ing for model-checking tools to demonstrate correctness.
The formal correctness proof considers the following prop-
erties: race conditions and starvation. One can also con-
sider if an agreed-upon termination state will be reached,
but we did not pursue this in this project. A race condition
emerges if different participants observe different paths for-
ward, for instance when a sender knows a message has been
sent out, while the receiver assumes no message has been
sent out since it has not arrived yet. In this case, sender and
receiver might take different next steps in the protocol. Star-
vation occurs when contracts are incompatible because cer-
tain messages assumed by a receiver are not part of the pro-
tocol of the assumed sender.

We used SSDL to validate the lack of race conditions in
an early version of the DealMaker service protocol specifi-
cation given in Figure 3. Further details are provided in [2].

5. Implementation and Run-Time En-
vironment

In this section we discuss two major elements of our
implementation, the service run-time environment in Sec-
tion 5.1 and the SSDL protocol execution engine in Sec-
tion 5.2. Extended versions of both sections can be found in
[2].

5.1. Service Run-Time Environment

We subsequently discuss instantiation, deployment and
invocation of services.

5.1.1. Service InstantiationThe concept of a portal in
our architecture facilitates participants in the real-estate in-
dustry to create service instances representing them and
their constituent properties. The functionality behind each
of the service instances is analogous, and the sole distin-
guishing factor in each is the data “contained” within. To
provide a replicated service implementation for each ser-
vice instance would be inefficient. We pursued a more ele-
gant and efficient solution to this issue by providing a spe-
cialised interface to a generic service, enabling reuse of the
service implementation, yet retaining the notion of distinct
service instances.

The production of the specialised interface, and thus ser-
vice instantiation is performed by an operation at the portal
service. This operation receives the instance-specific data

portal service

xslt

wsdd

wsdl

DB

Figure 6. Service instantiation process.

generic service

service
instances

2

3

1

Figure 7. Service deployment process.

in XML format, within a SOAP envelope, from the invok-
ing party, be it another service or a front-end to the por-
tal service. We use XSLT [13] to process the data received
since it offers a highly effective means of focused data ex-
traction and template incorporation. In the production of the
specialised interface we wish to create for each service in-
stance, we simply plug the instance-specific data into spaces
left within a WSDL template. Within the WSDL template,
the transformation customizes the name of the service, and
endpoint at which this service was deployed.

Buyers and sellers (and other participants) can state,
when registering at the appropriate portal, the service rep-
resenting their lawyer, surveyor etc, for use in the deal-
making process. This statement is made in the form of
the URL to the given service WSDL, resulting in a list
of WSDL URLs behind each buyer and seller service in-
stance. In collecting a number of services together and mak-
ing them available through a single interface, we have cre-
ated a very straightforward form of service composition.
Figure 6 depicts the various aspects of service instantiation.



1 <deployment xmlns= " http: // xml . apache . org / axis / wsdd/ " xmlns:java= " http: // xml . apache . org / axis / wsdd/
providers / java " >

2 <service name= " Package_n " provider= " java:RPC " style= " rpc " use= " encoded " >
3 <parameter name= " className " value= " scc2006 . packages . PackageService " />
4 <wsdlFile> wsdl / Package_n . wsdl </wsdlFile>
5 <parameter name= " allowedMethods " value= " * " />
6 <requestFlow>
7 <handlertype= " java:scc2006 . packages . PackageHandler " />
8 </requestFlow>
9 </service>

10 </deployment>

Figure 8. Sample service instance deployment file.

generic service1

handler

Figure 9. Service invocation process.

5.1.2. Service DeploymentThe final output of the above
instantiation process is the web service deployment descrip-
tor (WSDD) document. It is within this WSDD document
that we compose our service instance, stating the generated
WSDL as the service interface and the generic service as
the implementation. Figure 7 shows how each of the cre-
ated service instances is linked to the generic service imple-
mentation. With these details we have a complete descrip-
tion of the service instance, and therefore this service may
be deployed. A tool within Axis is then used to deploy the
service and enable its invocation by relevant parties. Fig-
ure 8 shows an example deployment file for the buyer and
seller services.

5.1.3. Service InvocationDeployment in the way de-
scribed above requires that the appropriate context be
forwarded to the generic service, to enable it to distin-
guish invocations for different service instances. That
is, given invocation of service instance A, we con-
vey to the generic service implementation I, that context
should relate to A. Therefore, all messages sent to the end-
point of a given service instance must first pass through
a handler, before being forwarded on to the generic ser-
vice implementation (see Figure 9). The handler, on receipt
of a message directed at a service instance endpoint in-
spects the message destination, that is, the endpoint of

the service instance. With the use of a unique identi-
fier for each service instance (incorporated into the instance
endpoint URL), the context for a message can be de-
rived from the message destination. This context is then
added into the message body, by the handler, provid-
ing the necessary context to the generic service implemen-
tation. With this context in place, the message is safely
forwarded on to the service implementation for process-
ing. This approach shows how context for service invoca-
tion can be made implicit from the service instance end-
point rather than being included explicitly within the
message. This enables the creation of replicated service in-
stances, linked to the same service implementation, which
behave the same as a stand alone service with specific im-
plementations.

5.2. SSDL Protocol Execution Engine

SSDL fully describes the state space of a composed ser-
vice as well as the sequence of service interactions (message
exchanges) required to reach each state. We can thus view
a composed service whose description is given in SSDL
as a state machine, with message exchanges providing the
transitions between states, and states implicitly defined as
points between these exchanges. Starting from this premise,
we developed an SSDL Protocol Execution Engine that di-
rectly executes the state machine defined by the SSDL de-
scription.

SSDL documents describe the state space in the form of
a tree whose leaf nodes are<msgref > elements. These
specify that the type of message referenced in theirref at-
tribute be sent or received. Other elements (sequence, par-
allel, branch, loop) define the order in which message ex-
changes in their subtrees need to occur. The protocol en-
gine must correctly implement the semantics of the differ-
ent elements. How this is done is discussed in detail in [2].

The general architecture of the engine is shown in Fig-
ure 10. Based on the state reported by the SSDL Process Ex-
ecution Engine, the DealMaker invokes actions tied to each
state. In addition, it offers facilities to keep the internal ma-
chine state consistent with the deal’s real-world status. If a
user requests so, based on the machine state, the DealMaker



data
basedeal-making service

SSDL
protocol

execution
engine

message exchange update

message
sequence

state
HTMLaction

u
s
e
r

Figure 10. The SSDL Protocol Execution En-
gine within the DealMaker service.

service retrieves an explanatory, pre-generated HTML page
from the database and delivers it to the user.

5.2.1. State-keeping in a stateless environmentWeb
Services that use Axis RPC wrappers are inherently state-
less. Every service invocation starts with a freshly-loaded
executable. One way to keep state is by storing the input se-
quence that was encountered previous to reaching the cur-
rent state. To restore state, the engine then steps through
this sequence, ignoring actions tied to the states it tra-
verses.

In regard to reaching the current state after startup, this
method is clearly less efficient than explicit state-keeping,
because all steps of the machine have to be executed again
before the actual action invoked can be taken. However, we
used it because (a) it is more flexible, and (b) helps to im-
plement fault-tolerant applications (see [2]). Higher flexi-
bility results from the fact that the state machine descrip-
tion (the SSDL document) can be modified between service
invocations, without necessarily invalidating any partially-
completed processes. This is of particular importance with
long-term processes such as that implemented by the Deal-
Maker, where one process instance may be running for sev-
eral months before all steps have been completed.

6. Conclusion

This paper reports on two and a half months of team
work on service-oriented computing, which included con-
ceiving the idea of the DealMaker service, researching the
real-estate business domain, designing the SOAR architec-
ture including extensive security and trust solutions, imple-
menting the DealMaker service and the supporting SSDL
protocol execution engine, and applying model checking to
a version of our protocol. The work combines state-of-the-

art fundamental computer science approaches with practi-
cal implementation and with the business and standardisa-
tion side of such work (discussed further in the full report
[2]). Particularly novel is the use of formal proof techniques
to demonstrate the correctness of our protocols, the solu-
tion for trusted claims, and the implementation of an SSDL
protocol engine. Of interest is also the systemic inclusion
of web interaction capabilities in SOAR web services, to
leverage human skills and input within the process of au-
tomation.

References

[1] E. de Mello, S. Parastatidis, P. Reinecke, C. Smith, A. van
Moorsel, and J. Webber. Demo of SOAR: Close the
Deal. Temporarily available athttp://vs-soc.ncl.
ac.uk:8180/CloseTheDeal/index.html (ac-
count:close , password:thedeal ), 2006.

[2] E. de Mello, S. Parastatidis, P. Reinecke, C. Smith, A. van
Moorsel, and J. Webber. Secure and provable service sup-
port for human-intensive real-estate processes. Technical
Report CS-TR: 960, School of Computing Science, Univer-
sity of Newcastle, May 2006.

[3] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control.ACM Transactions on Information and Sys-
tem Security, 4(3):224–274, 2001.

[4] home.co.uk. Home Buying Guide: Introduction.http://
www.home.co.uk/guides/buying .

[5] MISMO. Mortgage Industry Standards Maintenance Orga-
nization.http://www.mismo.org .

[6] OASIS.Assertions and Protocols for the OASIS Security As-
sertion Markup Language (SAML) v1.1. Organization for
the Advancement of Structured Information Standards (OA-
SIS), Setembro 2003.

[7] OSCRE. Open Standards Consortium for Real Estate.
http://www.oscre.org .

[8] S. Parastatidis, S. Woodman, J. Webber, D. Kuo, and
P. Greenfield. Asynchronous Messaging between Web Ser-
vices Using SSDL.IEEE Internet Computing, 10(1):26–39,
Jan/Feb 2006.

[9] PISCES. Property Information System Common Exchange
Standard.http://www.pisces.co.uk .

[10] Real Estate Web Sites.http://www.imoscout.de ,
http://www.immonet.de , http://www.
immowelt.de .

[11] RETS. Real Estate Transaction Standard.http://www.
rets.org .

[12] ssdl.org. SSDL–The SOAP Service Description Language.
http://www.ssdl.org , 2005.

[13] W3C. XSL Transformations (XSLT).http://www.w3.
org/TR/xslt , 1999.

[14] xwebservices.com. Xweb1003. http://www.
xwebservices.com/Web Services/XWeb1003 ,
2006.


