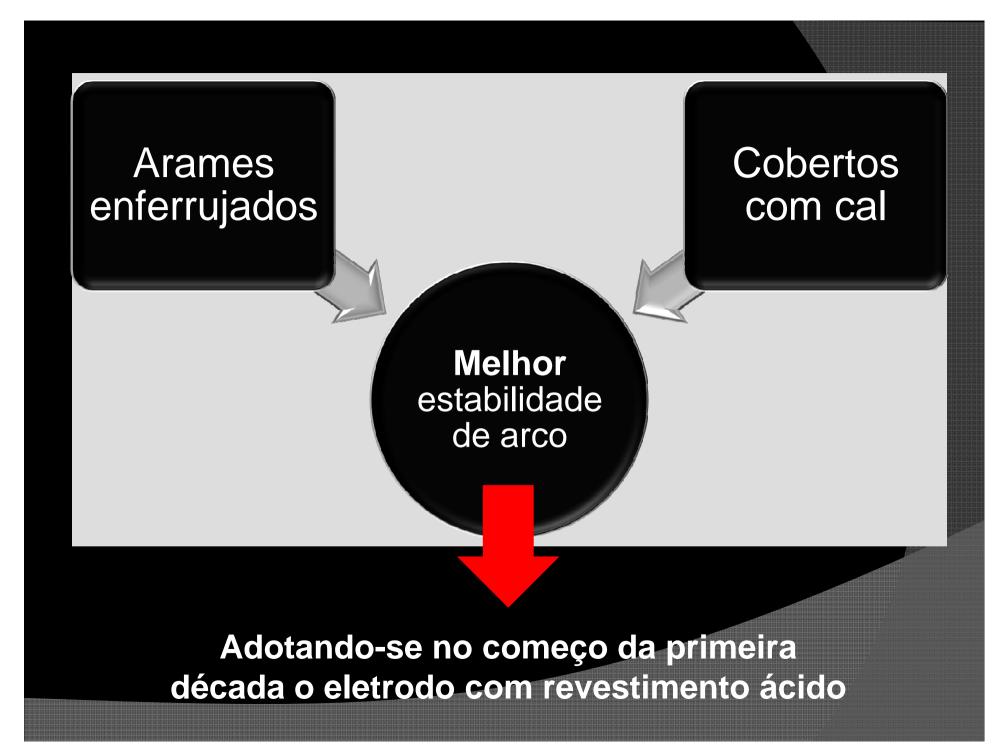

ELETRODOS REVESTIDOS


"A soldagem com eletrodos revestidos é definida como um processo de soldagem com arco, onde a união é produzida pelo calor do arco criado entre um eletrodo revestido e a peça a soldar" (TECCO, 2011).

No início do século

Contudo...

Asbesto

• Proteção da poça de fusão de contaminações;

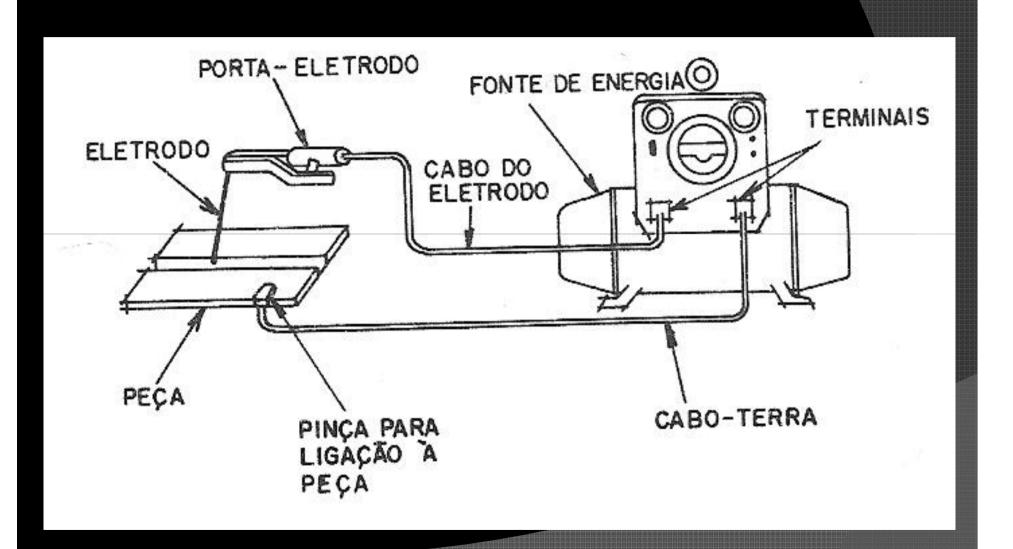
Algodão

• Aumenta penetração do arco de solda;

Tais fatos marcaram o advento do revestimento celulósico.

Logo, em meados da década de 30 teve-se o advento dos eletrodos rutílicos.

Já no início da década seguinte foi a vez do revestimento básico. E na década de 50 a adição do pó de ferro.


EQUIPAMENTOS

Fonte de energia

Alicate para fixação dos eletrodos

Cabos de interliga -ção Pinça para ligação a peça Equipa mento de proteção individual

Equipa mento para limpeza da solda

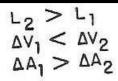
Fonte de energia

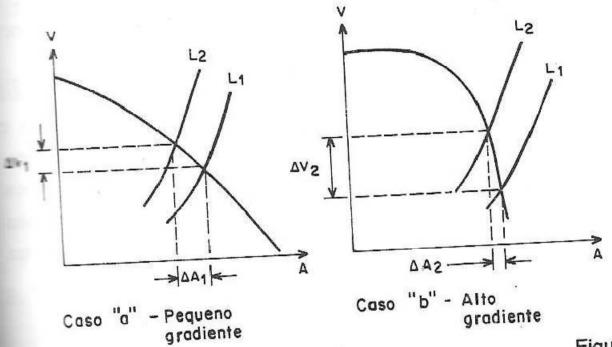
- O arco elétrico utilizado na solda com eletrodo revestido pode advir de uma fonte de:
 - Corrente contínua;
 - Corrente alternada;

Fonte de energia

O transformador para corrento alternada é a configuração mais simples e barata. Tanto do ponto de vista de investimento inicial quanto de operação e manutenção.

No caso de corrente contínua existem dois tipos de unidades que podem ser utilizadas:


- Geradoras;
- Transformadoras-retificadoras;


Durante a soldagem, ao limitar os picos de corrente nos curto-circuitos a estabilidade de arco é obtida,. Seja para alcançar reduzido volume de respingos ou para reabrir o arco, proporcionando adequada elevação da tensão após o curto-circuito.

Nesse caso, o comportamento dinâmico costuma ser ajustado através do projeto da fonte pela manipulação de gradiente da curva característica.

A fonte que é preferencialmente utilizada possui curva característica tombante. pois permite a obtenção de tensões mais elevadas em aberto (65-90V) que as de potencial constante (10-50V), favorecendo a abertura e reabertura do arco.

LEGENDA:

ΔV = VARIAÇÃO DA TENSÃO DE ARCO.

ΔA = VARIAÇÃO DA CORRENTE DE SOLDAGEM

L1, L2 = COMPRIMENTOS DE ARCO.

Figura 2.20 — Comparação do efeito do gradiente da curva característica da fonte.

Alicate para a fixação dos eletrodos

• Garras:

- Mais popular e utilizada no Brasil;
- Facilidade na hora de troca de eletrodos;
- Contato elétrico menos eficiente;

• Pinça:

- Mais comum em outros países;
- Dificultoso para a troca de eletrodos;
- Contato elétrico mais eficiente;

Cabos de interligação

Dois conjuntos de cabos de interligação são utilizados:

Conexão do eletrodo à fonte

Conexão da fonte a peça

Normalmente os cabos são compostos por fios finos de cobre enrolados e envolvidos por uma camada de borracha isolante e protetora.

Seu diâmetro depende da potência elétrica exigida, do comprimento e tipo de corrente.

Tabela 2.8 — Classificação dos cabos de cobre recomendados para interligação; adaptado de (1) e da NBR 6880-85^(*)

Corrente (A)	Fator de trabalho (%)	Comprimento do cabo (em m)				
		1 - 15	15 - 30	30 - 45	45 - 60	60 - 75
100	20	10	25	35	35	50
180	20	16	25	35	35	50
180	30	25	25	35	35	50
200	50	35	35	35	50	70
200	60	35	35	35	50	70
225	20	25	35	35	50	70
250	30	35	35	35	50	70
300	60	70	70	70	70	95
400	60	70	70	70	95	120
500	60	70	70	95	95	120
600	60	95	95	95	120	95(D)
650	60	95	95	120	70(D)	95(D)

^(*) Seção nominal do cabo em mm².

Interessados em maiores detalhes vide: BSI – BS638: Part 4:1979; Arc welding power soucerces, equipament and acessories, Part 4: Specification for Welding Cables.

⁽D) Cabo duplo.

Pinça para ligação a peça

Apresentam o formato de garra ou grampos que são conectados ao cabo de interligação.

Equipamentos de proteção individual

- Máscara de solda, equipada com filtros protetores contra radiação;
- Roupas para proteção do corpo, incluindo aventais, jaquetas, mangotes, luvas, perneiras etc...
- Sapatos industriais.

*A seleção dos filtros de proteção depende dos parâmetros de soldagem, algumas recomendações

são:

Diâmetros do eletrodo	Número do filtro		
(mm)			
1,6 a 4,0	10		
4,0 a 6,4	12		
6,4 a 9,5	14		

VARIÁVEIS ELÉTRICAS E OPERACIONAIS

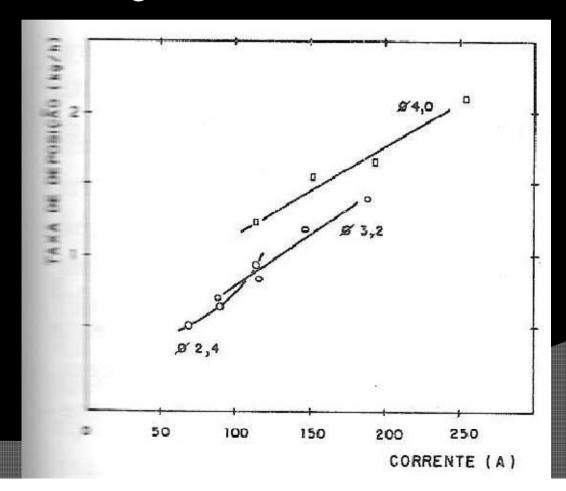
Principais variáveis operatórias

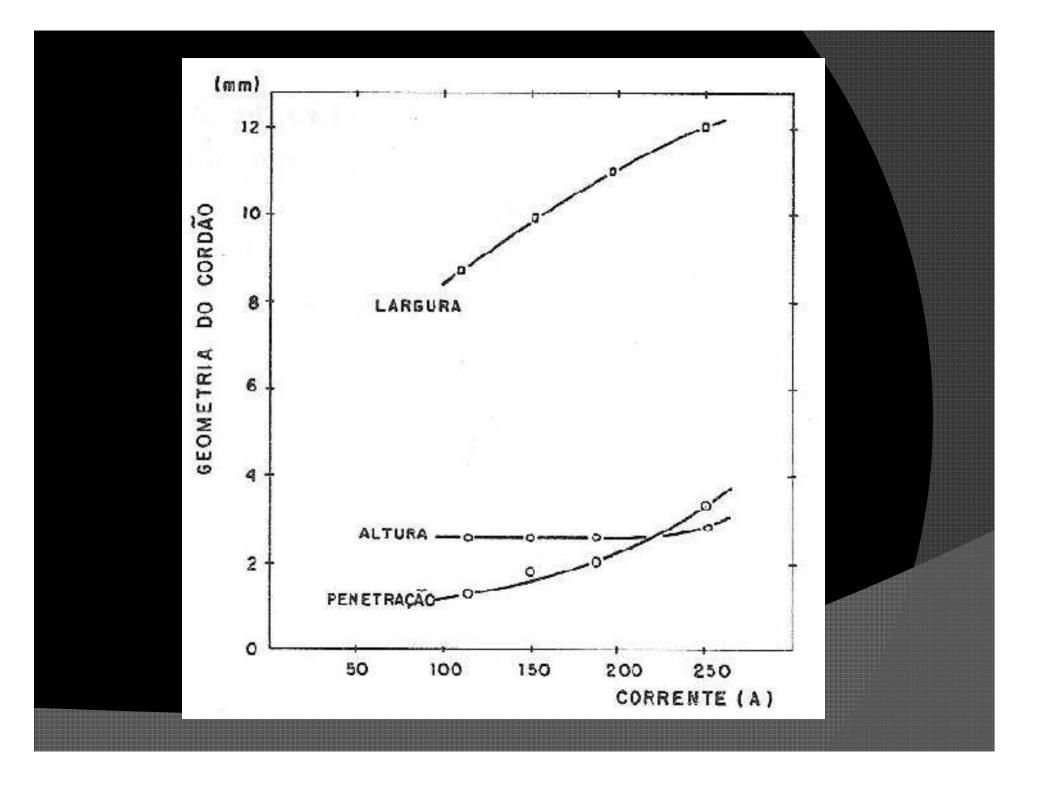
- Tipo e diâmetro do eletrodo;
- Tipo, polaridade e valor da corrente de soldagem;
- Tensão e comprimento do arco;
- Velocidade de soldagem;
- Técnica de manipulação do eletrodo;
- Sequência de deposição e soldagem;

Tipo e diâmetro do eletrodo

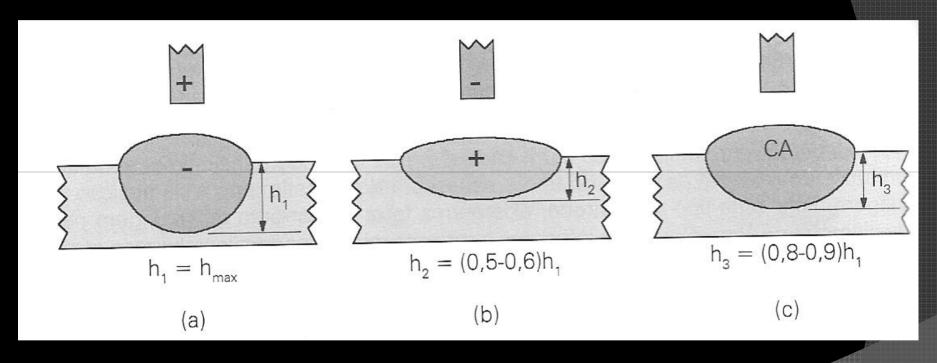
- Os diâmetros de eletrodos normalmente variam de 1 a 8mm e o comprimento 350 a 470mm. Dimensões superiores podem ser conseguidas através de encomenda.
- Utiliza-se como critérios de escolha:
 - Espessura do material a ser soldado;
 - Posição de soldagem;
 - Tipo de junta

Sob a óptica exclusiva da produtividade, deve ser escolhido o maior diâmetro de eletrodo praticável, para que se possa maximizar a taxa de deposição;


Limite de energia na junta soldada, impostas por questões metalúrgicas também impõem um valor máximo na seleção do diâmetro do eletrodo;


Corrente de soldagem

- controla predominantemente todas as características operatórias do processo, o aspecto do cordão e as propriedades da junta soldada.
- A faixa de corrente utilizável depende:
 - Diâmetro do eletrodo;
 - Material da alma;
 - Tipo e espessura do revestimento;
 - Posição de soldagem;



A intensidade de corrente é parâmetro determinante na taxa de deposição, penetração da solda, diluição e largura do reforço do cordão para dadas condições fixas de soldagem

O tipo de corrente e sua polaridade também afetam a forma e dimensões da poça de fusão

*A escolha do tipo de corrente e sua polaridade depende do tipo e diâmetro do eletrodo a ser utilizado.

Uma maneira de controlar a velocidade de resfriamento é alterando a velocidade de soldagem. O que também pode limitar o aumento da corrente é o aquecimento excessivo do revestimento, causando assim sua degradação. Tal fator corrobora com a relevância de sempre considerar a recomendação descrita pelo fabricante.

Uma característica importante que diferencia a soldagem com eletrodos revestidos dos demais processos semiautomáticos é a tensão de arco não é controlado independentemente dos demais parâmetros:

O controle da distância entre o eletrodo e a peça é realizado manualmente e não pode ser executado com grande precisão

A transferência dos glóbulos no arco está associada a variações consideráveis no comprimento efetivo do arco (e consequêntemente na tensão)

Maiores tensões são requeridas para operação normal, à medida que a corrente de soldagem é aumentada

Tensão e Comprimento do arco

- A tensão varia com o comprimento do arco e, na soldagem manual, o comprimento do arco é controlado diretamente pelo soldador dependendo da habilidade e experiência deste.
- O comprimento do arco deve variar entre 0,5 e 1,1 vezes o diâmetro do eletrodo, mas depende basicamente de:
- Diâmetro do eletrodo;
- Tipo de revestimento;
- Valor da corrente;
- Posição da soldagem

Velocidade de avanço

- É a segunda variável mais importante da operação do processo, cabe ressaltar, que seu controle é impreciso em aplicações manuais.
- Deve ser escolhida de forma que o arco fique ligeiramente a frente da poça de fusão

Altura e largura do cordão variam inversamente com a velocidade de avanço.

Oscilação do eletrodo

 Apresenta caráter intrínseco na soldagem, e uma das mais importantes implicações dessa variável é que:

Ângulo do eletrodo em relação à peça

 Normalmente ajustado no sentido de melhorar o fluxo térmico entre as partes soldadas, controlar o banho na poça de fusão e o formato do cordão, em particular, a molhabilidade do líquido nas bordas do chanfro.

O ângulo do eletrodo
é uma variável
importante, pois pode
ocasionar o
aparecimento de
defeitos de cordão de
difícil controle

Depende
Depende
essencialmente
do operador e
seu grau de
seu grau de
destreza.
destreza.

CONSUMÍVEIS

- Constituídos basicamente por revestimento e alma
- São normalmente obtidos através da extrusão, sob pressão, de um revestimento sobre a alma;
- Posteriormente passam para a etapa de secagem em lotes ou fornos contínuos;
- Finalizando processo no empacotamento;

Alma

- Suas características são definidas de acordo com as características da solda:
 - Pequena responsabilidade: Alma obtida através de aços semi ou não acalmados;
 - Grande responsabilidade: Alma obtida por aços de alta qualidade com teores de S e P abaixo de 0,04%;
 - Estabilidade do arco: Presença reduzida de desoxidantes, Si e Al;

Revestimento

- Constituido por uma mistura de compostos minerais ou orgânicos e um aglomerante;
- Devem possuir um número de propriedades simultâneas;

Revestimento

- Deve prover adequada proteção gasosa, desoxidação e adição de liga;
- Composição química homogênea ao longo do cordão;
- Operação, controle e remoção de escórias devem ser fáceis;
- Depósitos livres de trincas, poros ou outros defeitos com bom acabamento superficial;
- Mínima quantidade de respingos;
- Boa estabilidade do arco;
- Penetração adequada;
- Taxa de deposição alta;
- Eletrodo não deve superaquecer e geração de odores e fumos deve ser mínima;
- Revestimento n\u00e3o deve ser higrosc\u00f3pico, deve estar fortemente aderente a alma e ser flex\u00e1vel;

Revestimento

- Elementos estabilizadores: Dissociam-se no arco gerando gases com baixo potencial de ionização;
- Formadores de proteção: São os que geram os gases como o CO, o CO₂ e o hidrogênio;
- Escorificantes: Formam uma camada líquida impermeável que flutua sobre o banho sem reagir com o mesmo;
- Fluxantes:Possuem atividade física ou química e fornecem proteção contra oxidação

Classificação Revestimentos

- Eletrodos Celulósicos: Constituídos por mais de 20% de materiais celulósicos;
- Eletrodos Rutílicos: Possui mais de 20% de rutilo (óxido de titânio – TiO₂);
- Eletrodos Ácidos: Baseados em óxidos de ferro e de manganês e em silicatos;
- Eletrodos Básicos: Baseados no carbonato de cálcio
- Eletrodos Óxidos: Constituído principalmente por óxido de ferro e manganês;

Eletrodos Celulósicos

 Sob ação do arco decompõem-se segundo a reação:

 $2C_6H_{10}O_5 + 7O_2 \longrightarrow 2CO_2 + 10H_2$

produzindo forte jato plasmático que resulta em alta penetração

- Baixa taxa de deposição;
- Elevada tensão de arco;
- Escória fina e de rápida solidificação;
- Alta quantidade de respingos;
- Usualmente restrito a soldagem com CCPR devido baixa estabilidade do arco;
- Aspecto do cordão não é bom, mas apresenta boas características mecânicas exceto pela possibilidade de fragilização pelo hidrogênio;

Eletrodos Rutílicos

- Alta estabilidade do arco com tensões relativamente baixas;
- Pode ser utilizado tanto com CC como CA;
- Pequena quantidade de respingos e bom aspecto superficial do cordão;
- Escória abundante, densa e de fácil destacabilidade, pode ter sua viscosidade controlada através de pequenas adições de minerais;
- Média ou baixa penetração;
- Pode-se obter altas taxas de deposição através da adição de pó de ferro ao revestimento;

Eletrodos Ácidos (óxidos)

- Escória abundante, de caráter ácido e porosa facilmente destacável;
- Resistência a fissuração muito pobre;
- O balanço da composição do eletrodo influencia na ductilidade e na tenacidade da junta soldada;
- Pequeno volume de respingos e gases gerados;
- Tensão de arco relativamente baixa e soldagem pode ser executada em CC e CA;
- Altas taxas de deposição e penetração média;
- Boa aparência.

Eletrodos Básicos

- Mais adequado para soldas de responsabilidade, materiais de difícil soldabilidade, aços liga e ligas não ferrosas;
- Penetração média e depósitos de bom aspecto superficial;
- Exige considerável habilidade do soldador para evitar porosidades e inclusão de escórias;
- Requer secagem e manutenção cuidadosas (higroscópico);
- Tensões de arco elevadas, soldável com CCPR e CA;
- Soldável em todas as posições;

CLASSIFICAÇÃO E NORMALIZAÇÃO

ABNT-EB-79

- pouca utilização;
 - Letra indicando tipo de aço
 - Algarismos indicando:
 - Resistência mecânica;
 - Posições de soldagem;
 - Tipo e polaridade de corrente elétrica;
 - Grau de penetração;
 - Tipo de revestimento;

ISO 2560

Aumentando popularidade;

ExxyZZaaabc(H)

Compulsória

Opcional

ISO 2560

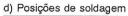
- Parte compulsória ExxyZZ:
 - Parte E: Designa eletrodo revestido;
 - xx: Define limites mínimos de resistência e escoamento (N/mm²);
 - y: Define alongamento porcentual e a temperatura de ensaio para uma energia absorvida de 28J em ensaio de Charpy;
 - ZZ: Define o tipo de revestimento;

ISO 2560

- Parte Opcional aaabc(H):
 - aaa: Define eficiência normal do eletrodo em múltiplos de 10;
 - b: Indica as possíveis posições de soldagem;
 - c: Indica o tipo de corrente, polaridade (no caso de CC) e tensão em aberto (no caso de CA);
 - (H): Indica que o eletrodo deposita baixo nível de hidrogênio (i.e. menos de 15 ml de hidrogênio para cada 100g de metal de solda)

Tabela 2.11 — Eletrodos para a soldagem de aços ao carbono e de baixa liga, de acordo com a ISO.

a) Limites de resistência


Exx	Limite de resistência (N/mm²)					
E43	430-550					
E51	510-650					

b) Alongamentos e temperatura de ensaio para energia absorvida de 28 J

Exxy	Alongamer E43	nto min. (%) E51	Temperatura para 28 J (°C)				
0	NE	NE	NE				
1	20	18	20				
2	22	18	0				
3	24	20	-20				
4	24	20	-30				
5	24	20	-40				

c) Tipos de revestimento

ExxyZZ	Tipo de revestimento	Componentes ativos
A	Ácido	FeO, MnO, SiO ₂
AR	Ácido rutílico	FeO, MnO, SiO ₂ , TiO ₂
B	Básico	CaCO ₃ , CaF ₂ ,
C	Celulósico	Compostos celulósicos
O	Óxido	FeO, MnO
R	Rutíli∞ médio	TiO ₂ , Comp. celulósicos
RR	Rutíli∞ espesso	TiO ₂
S	Outros	NE

ExxyZZaaab	Posições de soldagem
1	Todas
2	Todas, exceto vertical descendente
3	Topo e filete na posição plana, filete nas posições horizontal e vertical
4	Topo e filete na posição plana
5	Como 3, incluindo vertical descendente
6	Outras combinações não classificadas

e) Tipos de corrente, polaridade e tensões em aberto

ExxyZZaaabc	Polaridade recomendada com CC	Tensão normal em aberto com CA (V)
0	+	Somente corr. cont.
.1	+/-	50
2	-	50
3	+	50
4	+/-	70
5	-	70
6	÷	70
7	+/-	90
8		90
9	+	90

Sistema Norte-Americano

- Normalizado pela AWS;
- Mais difundido mundialmente;
- Divide-se em:
 - A5.1-81: Engloba as classes de resistência 60 e 70
 - A5.5-81: Engloba as classes de resistência de 70 a 120;
 - A5.4-81: Classifica eletrodos para soldagem de aços inoxidáveis;
 - A5.13-80 e A5.21-80: Classifica eletrodo para revestimentos soldados;
 - A5.6-76: Classifica eletrodos utilizados em ligas de cobre;
 - A5.11-83: Eletrodos de níquel e suas ligas
 - A5.15-83:Eletrodos para soldagem de ferro fundido;
 - A5-3-80: Eletrodos para soldagem de alumínio e suas ligas

A5.1-81

Exemplo: E7018-1

- E: Indica eletrodo revestido
- Os dois dígitos subsequentes indicam o limite de resistência (60 ou 70);
- Os dois últimos dígitos indicam o tipo de revestimento e características operatórias do eletrodo;

Tabela 2.13 — Descrição dos consumíveis para a soldagem de aços-carbono, segundo a AWS⁽¹⁴⁾

Classificação Posições (1)		Corrente	Propried	lades Mecâr	nicas (2)	Revestimentos / Características			
			L.R. (3)	L.E (4)	λ (5)				
E-6010	P, V, S, H	CC+	430	340	22	Altamente œlulósico, com silicato de sódio. Alta penetração. Aspecto superficial pobre. Uso gera em tanques, tubulações, navios, etc.			
E-6011	P, V, S, H	CC+,CA	430	340	22	Altamente celulósico, com silicato de potássio. Características semelhantes ao E-6010, com penetração inferior.			
E-6012	P, V, S, H	CC-,CA	460	380	17	Rutílico com silicato de sódio. Média penetração densa escória, bom aspecto superficial. Uso geral.			
E-6013	P, V, S, H	CC+,CC-,CA	460	380	17	Rutífico com silicato de potássio. Semelhante ao E-6012, com penetração tendendo a ser inferior Em pequenos diâmetros é especificamente recomendado para chapas finas.			
E-6020	HF	CC-,CA	430	340	22	À base de óxido de ferro, com compostos de manganês e silício. Penetração média/alta Aspecto superficial razoável. Uso em vasos de pressão, bases de máquinas e estruturas.			
E-6022	P	CC-,CC+,CA	460	NE	NE	Semelhante ao E-6020, indicado para soldas monopasse, com aspecto superficial inferior.			
E-6027	P, HF	CC-,CA	430	340	22	Semelhante ao E-6020, com adição de pó de ferro, média penetração, bom aspecto superficial, qualidade radiográfica levemente inferior. Uso em secções espessas.			
E-7014	P, V, S, H	CC-,CC+,CA	500	420	17	Semelhante ao E-6012 e E-6013, com adição de pó de ferro.			
E-7015	P, V, S, H	CC+	500	420	22	Básico com silicato de sódio. Moderada penetração, aspecto razoável, p/ pobre, dependendo da qualidade do metal base. Requer maior habilidade. Uso onde propriedades mecânicas e qualidade do depósito são essenciais.			
E-7016	P, V, S, H	CC+,CA	500	420	22	Semelhante ao É-7015, com silicato de potássic e pó de ferro.			
E-7018	P, V, S, H	CC+,CA	500	420	22	Semelhante ao E-7016, com alta adição de pó de ferro.			
E-7024	P, HF	CC-,CC+,CA	500	420	17	Semelhante ao E-6012 e E-6013, com grande adição de pó de ferro. Alta taxa de deposição uso geralmente em soldas de filete:			
E-7027	P, HF	CC-,CA	500	420	22	Semelhante ao E-6027. Uso onde propriedades mecânicas superiores são necessárias.			
E-7028	P, HF	CC+,CA	500	420	22	Semelhante ao E-7018, com maior adição de pode ferro.			
E-7048	P, S, H, V,D	CC+,CA	500	420	22	Semelhante ao E-7018. Uso especificamente para soldagem na posição vertical descendente.			

NOTAS:

- (1) P=Plana, V=Vertical, S=Sobrecabeça, H=Horizontal, HF=Horizontal (Filetes) VD=Vertical descendente.
- (2) NE=Não especificado
- (3) Limite de resistência, MPa
- (4) Limite de elasticidade, MPa
- (5) Alongamento %

A5.5-81

Exemplo: E70XX

- E: Indica eletrodo revestido
- Os dois dígitos subsequentes indicam o limite de resistência (70 a 120);
- Os dois últimos dígitos indicam composições químicas dos depósitos;

Tabela 2.14 — Composição de consumíveis para aços ao carbono e de baixa liga, segundo a AWS^(14,17)

47.2 × 28 .2						
Classes	Composição básica					
E60XX E70XX E E70XX-A1 ES E80XX-B1, E80XX-B2, E80XX-B2L, E90XX-B3, E90XX-B3L, E8015-B4L, E8016-B5 E80XX-C1, E70XX-C1L, E80XX-C2, E70XX-C2L, E80XX-C3 E80XX-NM E90XX-D1, E80XX-D3, E100XX-D2 EXXXX-G EXXXX-Me EXXXX-W	Composição não normalizada Composição básica C/Mn/Si, podendo incorporar Ni, Cr, Mo, e V em limites bastante flexíveis C/Mn/Si/Mo (Mn < 1%) C.Mn/Si/Cr/Mo (Mn < 1%) C/Mn/Si/Ni (Mn < 1,25%) C/Mn/Si/Ni/Mo (Mn < 1,25%) C/Mn/Si/Mo (Mn > 1%) C/Mn/Si, com pelo menos um dos elementos Ni, Cr, Mo, ou V Composições para enquadrar outras especifica- ções norte-americanas					

A5.4-81

- Consiste da letra E no primeiro dígito;
- Sequência de dígitos correspondendo a classificação AISI da liga;
- Sufixo designando o tipo de revestimento
 - 15: Básico Utilizado para soldagem em CCPR;
 - 16 Rutílico Utilizado para soldagem em CCPR e CA em todas as posições;
 - 17 Rutílico/sílica Mesma utilização do 16, porém com melhor aspecto superficial e características operacionais
 - 25 Sintéticos/básico Utilizável para CCPR e recomendável para soldas plana e horizontal;

CONSIDERAÇÕES FINAIS

Aplicação

- Campo de aplicação mais vasto entre todos os processos de soldagem;
- Taxa de deposição deve ser maximizada e compatível com os critérios de qualidade e segurança operacional;
- Tabelas baseadas na experiência podem ser usadas como referência básica na descrição de um procedimento de solda;

Tabela 2.17 — Classificação comparativa do desempenho das classes de consumíveis⁽³⁾

	F6010	F6011	F6012	F6013	F7014	F7016	F7018	F7024	F6027	E7028
Soldagem em topo, posição plana, espessura maior que 6 mm	4	5	3	8	9	7	9	9	10	10
Soldagem em topo, todas as posições, espessura major que 6 mm	10	9	5	8	6	7	6	NA	NA	NA
Soldagem em filete, posições plana ou horizontal	2	3	8	7	9	5	9	10	9	9
Soldagem em filete, todas as posições	10	9	6	7	7	8	6	NA	NA	NA
Chaparia espessa ou altamente restrita	8	8	6	8	8	10	V-0-2-	7	8	9
to com alto enxofre	NA	NA	5	3	3	10	9	5	NA	9
Taxa de deposição	4	4	5	5	6	4	6	10	10	8
Penetração	10	9	6	5	6	7	7	4	8	1
Aparência do cordão, ausência de mordeduras	6	6	8	9	9	7	10	10	10	10
Lusência de defeitos	6	6	3	5	9 7	10	9	8	9	9
Ductidade	6	7	4	5	6	10	10	5	10	10
Fiesistência ao impacto	8	8	4	5	8	10	10	9	9	10
Ausência de respingos	1	2	6	7	9	6	8	10	10	9
Tolerância à má preparação da junta	6	7	10	8	9	4	4	8	NA	4
Facilidade e conforto na soldagem	7	6	8	9	10	6	8	10	10	9
Facilidade na remoção da escória	9	8	6	8	8	4	7	9	9	8

MOTAS: O desempenho melhora na seqüência de 1 a 10 e pode mudar de acordo com o diâmetro.

Ver Tab, 2.13 para descrição dos tipos de consumíveis

NA = Não aplicável

Higiene e Segurança

- Responsabilidade do projetista da fonte
 - Limitar tensão em aberto a um mínimo praticável;
 - Promover isolamento interno adequado;
 - Garantir que não haverá superaquecimento sob as condições previstas de uso;
 - Prever dispositivos para locomoção manual e içamento;

Higiene e Segurança

- Responsabilidade do usuário:
 - Certificar-se que a ligação elétrica está efetuada corretamente por um técnico eletricista qualificado;
 - Certificar-se do aterramento adequado;
 - Distribuir instalação de máquinas de forma a balancear demanda de corrente entre as fases (instalações com mais de uma fonte);
 - Garantir isolamento de todos os cabos;
 - No caso de mais de um soldador trabalhar na mesma peça, cuidados especiais devem ser tomados;
 - Garantir ventilação ou suprimento de ar independente ao soldador no caso de locais pouco ventilados.
 - A pinça de contato deve estar o mais próximo possível da junta soldada e o cabo terra deve ser o mais curto possível;