Fibra óptica

Professor: Cleber Jorge Amaral

2016-2

Agenda

- Vantagens da fibra óptica
- História
- Propagação de luz
- Espectro de frequências
- Composição do cabo de fibra óptica
- Janelas de transmissão óptica
- Tipos de cabos de fibra
- Parâmetros ópticos

Introdução

- Os cabos de fibra óptica, ou simplesmente cabos ópticos, são cabos de pequenas dimensões e, em sua maioria, constituídos de sílica ou plástico, ambos materiais de extrema pureza e transparentes o suficiente para propagar um feixe luz por centenas ou milhares de metros.
- Diferente dos cabos de cobre, as fibras transmitem luz por meio do princípio de reflexão total, podendo ser gerada por laser ou LED.

Vantagens

- Imunidade interferência de campos eletromagnéticos (EMI);
- Dimensões reduzidas (comparadas aos cabos UTP);
- Grande largura de banda;
- Lançamentos em áreas externas, em rios, lagos e oceanos;
- Elevadas taxas de transmissão;
- Cobre grandes distâncias.

História

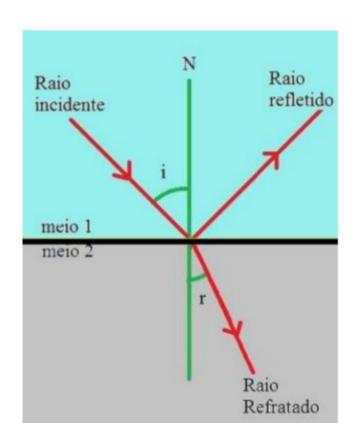
- Criada por Narinder Kapany (1955)
 - São estruturas totalmente dielétricas com geometria cilíndrica, na qual a energia luminosa se propaga ao longo do núcleo (core)
 - As fibras ópticas atuam como condutores de radiação infravermelha
 - uma ou mais fibras são revestidas individualmente em plásticos, ou outro material, agrupadas e recobertas por uma capa, formando um cabo

Meios de propagação da Luz

- Transparente (passagem da Luz)
 - Permite a propagação regular da luz, o observador vê um objeto com nitidez através do meio. Ex.: ar, vidro, papel celofane, etc...
- Translucido (passagem parcial da Luz)
 - Permite propagação irregular da luz, o observador vê o objeto através do meio, mas sem nitidez.
- Opaco (a luz não passa)
 - Não permite que a luz se propague, não é possível ver um objeto através do meio.

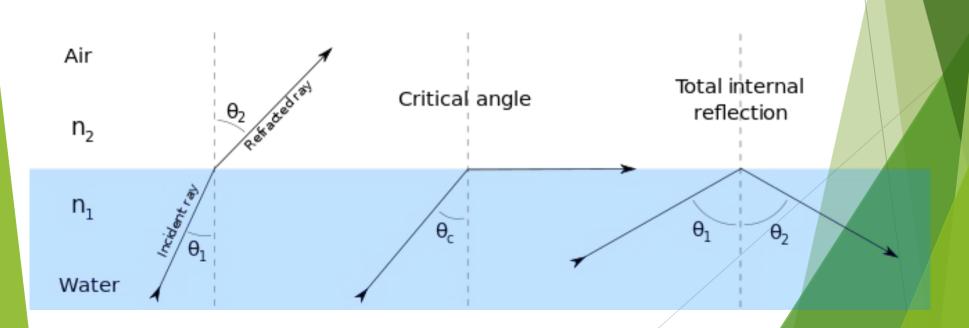
Fenômenos de propagação

- Reflexão
 - Retorno da onda incidente em direção à região de onde ela é oriunda, após entrar em contato com uma superfície refletora
- Refração
 - A onda incidente atravessa a superfície de um outro meio formando um raio refratado que segue uma trajetória com dada inclinação



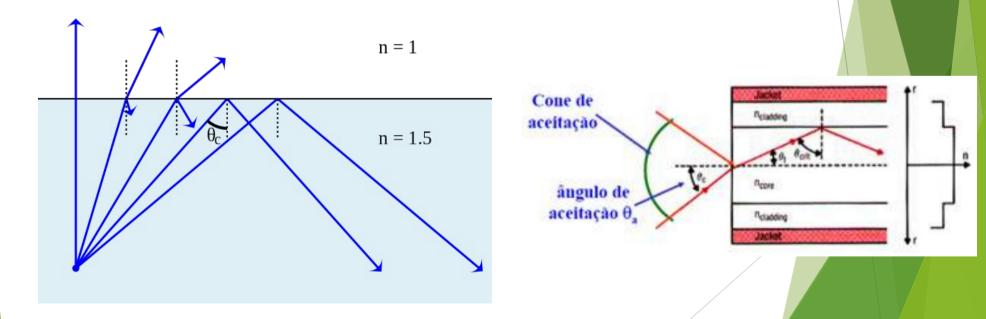
Fenômenos de propagação

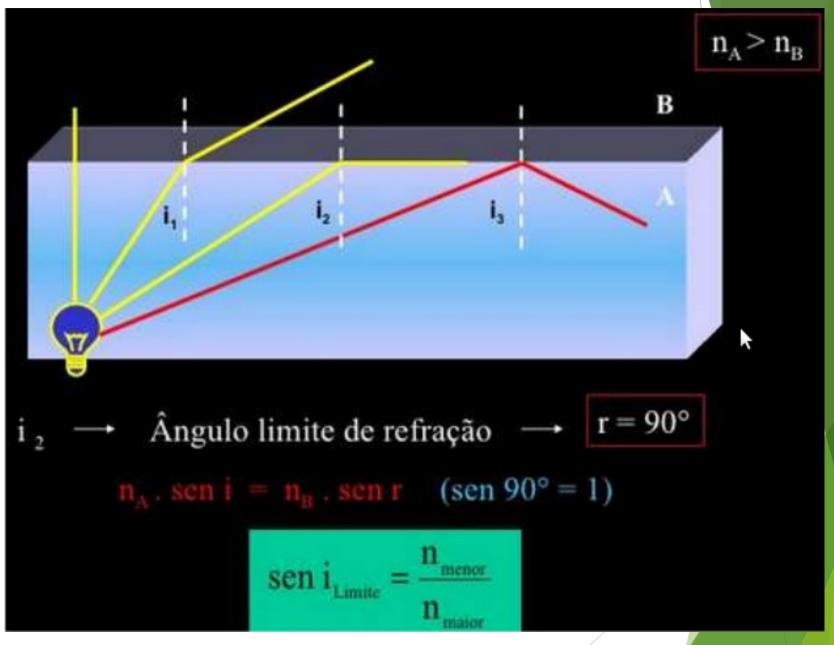
 Índice de refração é dado por c / v (velocidade da luz no vácuo dividido pela velocidade da luz no meio)


 $n = \frac{\tilde{v}}{v}$

Material	n
Vácuo	1
Ar seco (0°C, 1atm)	1,0003
Gás carbônico (0°C, 1atm)	1,0004
Gelo (-8°C)	1,31
Água (20°C)	1,333
Etanol (20°C)	1,362
Tetracloreto de carbono	1,466
Glicerina	1,47
Monoclorobenzeno	1,527
Vidros	1,55
Diamante	2,417
Sulfeto de antimônio	2,7

Lei de Snell-Descartes

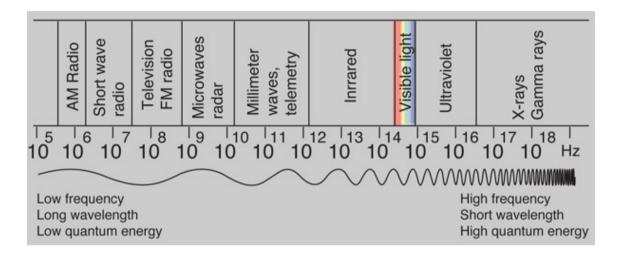

- Quando a luz viaja de um meio com índice de refração maior para um com índice menor
- O maior ângulo de incidência possível que ainda resulta em um raio refratado é chamado de ângulo crítico; nesse caso o raio refratado viaja ao longo da fronteira entre os dois meios.
- Para cada meio e para o raio de incidência ou refratado, é constante o produto do seno do ângulo de incidência ou do ângulo de refração e o índice d refração do meio em que este raio se encontra.


Lei de Snell-Descartes

Para cada meio e para o raio de incidência ou refratado, é constante o produto do seno do ângulo de incidência ou do ângulo de refração e o índice de refração do meio em que este raio se encontra.

$$n_A \cdot sen \, \theta_A = n_B \cdot sen \, \theta_B$$

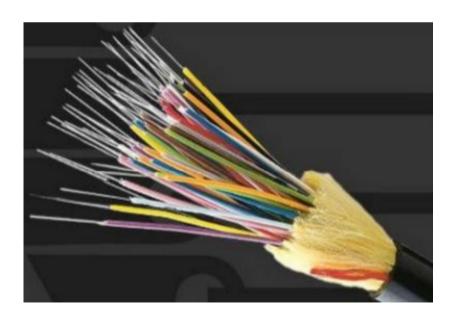
Lei de Snell-Descartes



https://www.youtube.com/watch?v=0MwMkBET_5/

Espectro

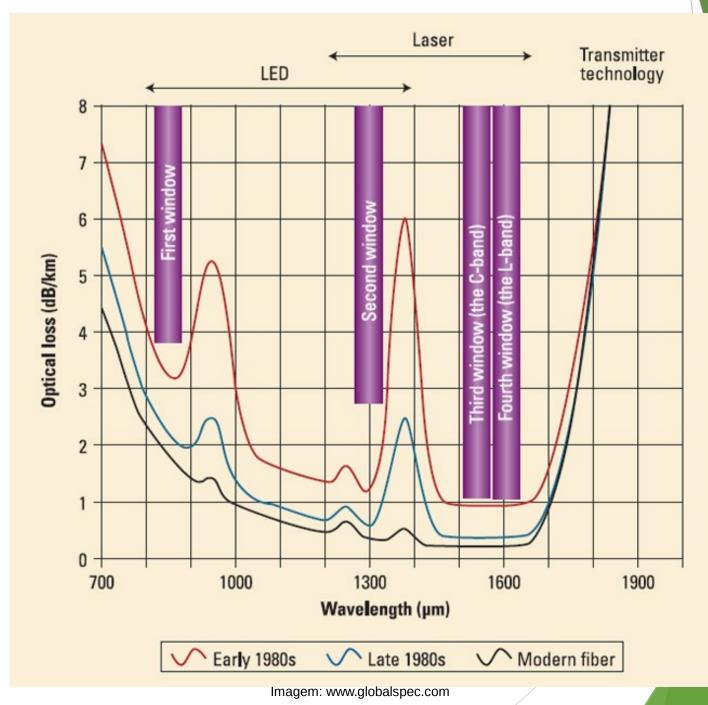
Infravermelho: 1 mm a 750 nm (0,3 a 400


THz)

- Fibra óptica: 1600 a 750 nm (187 a 400 THz)
- As dimensões das fibras variam de acordo com o tipo da fibra óptica, seus núcleos podem variar de 7µm atá 2001 po a casca de 125µm até 240µm.

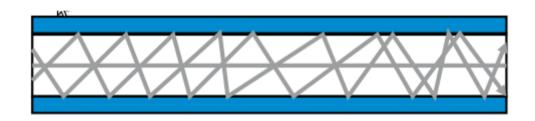
Composição

- Plástico ou Vidro, ambas com sílica (dióxido de silício ou SiO2)
- Quartzo, Areia, Plástico e Gases
 - dopagem que da os diferentes índices de refração no núcleo e casca



Composição

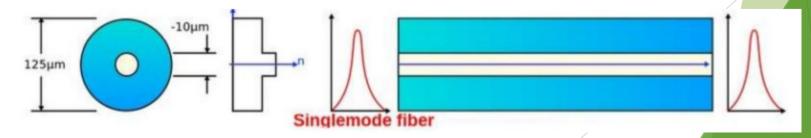
- Fibras tanto monomodo e multimodo, apr<mark>esentam</mark> as seguintes composição básica:
 - Cabo e demais revestimentos de proteção.
 - Capa (revestimento primário): Proteção externa da fibra, dando resistência à tração mecânica.
 - Casca (camada de refração): Confina o sinal óptico transmitido dentro do núcleo.
 - Núcleo (Fibra ótica): local onde o sinal óptico se propaga ao longo do cabo.



Janelas de transmissão

Tipos de fibras

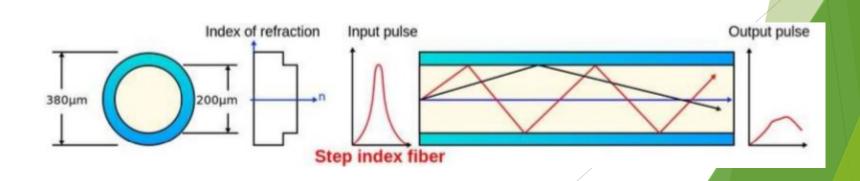
- Multimodo
 - O sinal se propaga de vários modos (multi).



- Monomodo
 - O sinal de luz se propaga em sentido único ou seja, único modo (mono)

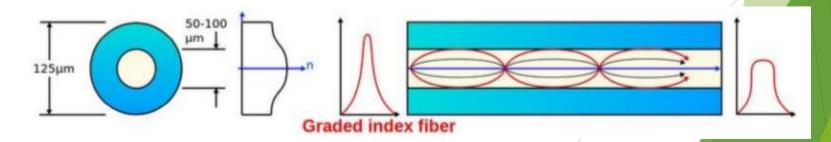
Fibras Monomodo

- Este tipo de fibra possui o núcleo com dimensões pequenas que variam entre 7 a 10µm de núcleo (poucas vezes maior que comprimento de onda) e 125µm de casca.
- Sua maneira modo de propagação da luz é em um único modo e, devido à sua baixa atenuação, alcança grandes distâncias e uma grande banda passante.
- As dimensões típicas de fibras monomodo são
 9μm de núcleo e 125μm para casca.
- Cone de aceitação: 10°

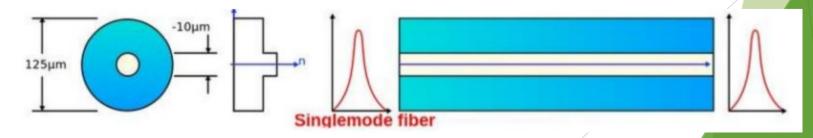


Fibras Multimodo

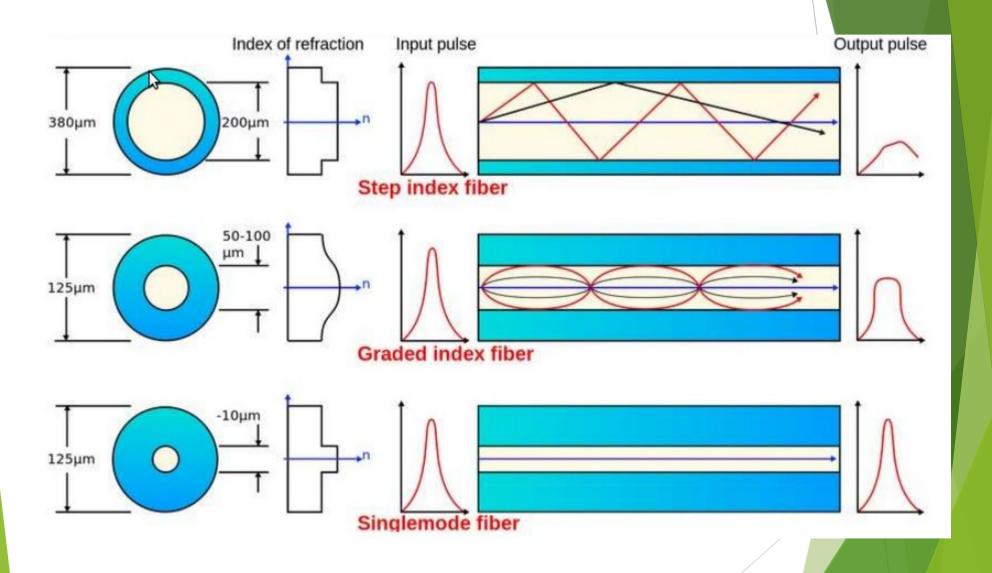
- Possuem dimensões que variam entre 50 a 62,5µm de núcleo e casca de 125µm (núcleos maiores foram fabricados anteriormente mas caíram em desuso após padronização 10BASE-F e FDDI)
- Distâncias limitadas se comparado com a monomodo
- A possibilidade de se estender a distância reduz a largura de banda para que a dispersão modal não interfira na qualidade da transmissão
- Nas fibras multimodos a excitação do sinal é realizada por LED, com comprimentos de onda de 500 a 850nm ou com VCSEL (tipo específico de laser) que opera numa janela de 850 a 1.300nm.


Fibras Multimodo: Índice Degrau

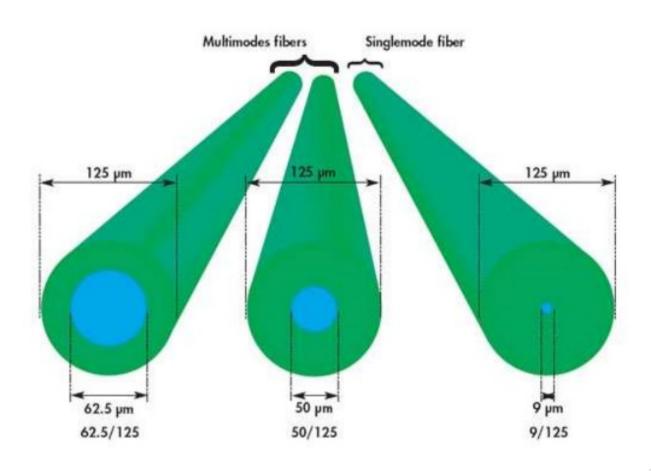
- Constituído de um único tipo de vidro, de baixa banda passante, quando comparadas às fibras graduais.
- Para uso em curtas distâncias (1km)
- Dimensões que variam de 50 a 400μm.
- Estas fibras não estão sendo mais fabricadas.
- Cone de aceitação de 30° e 40°


Fibras Multimodo: Índice Gradual

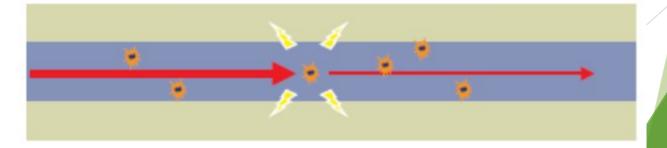
- Possuem o núcleo com dimensões de 62,5μm ou 50μm.
- Diâmetro da casca de 125μm
- A dopagem do núcleo é heterogênea
- O sinal luminoso percorre "caminhos" em diferentes indices de refração, onde há maior distância há também maior velocidade fazendo com que os sinais cheguem ao mesmo tempo.
- Pode chegar a 10 Gbps de taxa de transmissão
- Baixa atenuação
- Curtas distâncias (~4km)
- Cone de aceitação de 30° e 40°



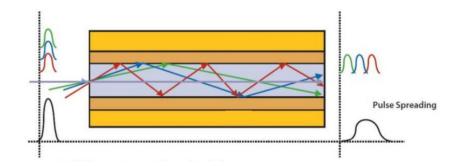
Fibras Monomodo

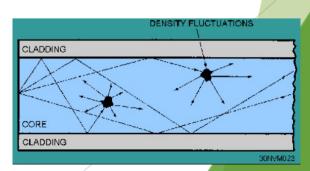

- Este tipo de fibra possui o núcleo com dimensões pequenas que variam entre 7 a 10µm de núcleo e 125µm de casca.
- Sua maneira modo de propagação da luz é em um único modo e, devido à sua baixa atenuação, alcança grandes distâncias (70km no 1000BASE-ZX) e uma grande banda passante.
- As dimensões típicas de fibras monomodo são
 9μm de núcleo e 125μm para casca.
- Cone de aceitação: 10°

Fibras



Fibras


Parâmetros ópticos


- Atenuação
 - Perda de potência do sinal propagado no interior da fibra óptica
 - É resultado da absorção molecular da luz que trafega na fibra de vidro, fazendo com que o sinal chegue ao seu destino com uma potência (luminosidade) mais baixa que aquela inserida no transmissor
 - Luz é absorvida por impurezas e convertida em energia de vibração ou calor
 - Medida em decibel por quilômetro (dB/Km).

Parâmetros ópticos

- Dispersão
 - Separação da onda em vários espectros de frequência.
 - A divisão óptica de todos os componentes que compõem o feixe de luz, gerando um sinal composto por diversas frequências distintas.
 - Durante a transmissão de dados por uma fibra óptica, esse efeito causa o "alargamento de bits" provocando erros de interpretação do sinal no receptor.
 - Medida em ps/nm.km (picosegundo/nanometro*km)

NBR 14565

Atenuação de canal

Tabela 22 — Atenuação de canal

Atenuação de canal dB					
Canal	Multimodo		Monomodo		
	850 nm	1 300 nm	1 310 nm	1 550 nm	
OF-300	2,55	1,95	1,80	1,80	
OF-500	3,25	2,25	2,00	2,00	
OF-2000	8,50	4,50	3,50	3,50	

OF-XXX: canais que suportam aplicação esp**ecífica** por ao menos XXX metros

Para que o atraso de propagação esteja dentro dos limites aceitáveis, respeitas os comprimentos máximos dos canais.

Vídeos

Fabricação do núcleo e casca da fibra (Discovery Channel:2010)

https://www.youtube.com/watch?v=D4nGPI6DTLw

Fabricação final de cabos de fibra óptica (Superior Essex:2012)

https://www.youtube.com/watch?v=fjRqGKU9cUU

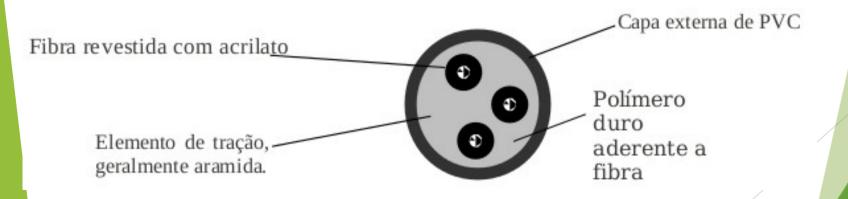
Vídeo introdutório sobre fibra óptica (Corning:2013)

https://www.youtube.com/watch?v=N_kA8EpCUQo

Banda passante das fibras

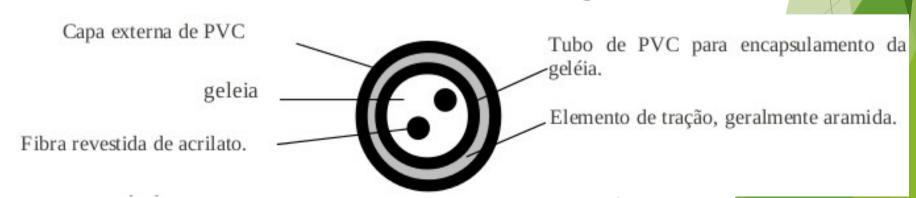
- Os cabos de fibra ótica multimodo devem seguir a seguinte classificação de desempenho:
 - OM1: largura de banda modal efetiva de 200 MHz.km a 850 nm
 - OM2: largura de banda modal efetiva de 500 MHz.km a 850 nm
 - OM3: largura de banda modal efetiva de 2.000 MHz.km a 850 nm
 - OM4: largura de banda modal efetiva de 4.700 MHz.km a 850 nm
- A fibra OM1 possui núcleo de 62,5 μm, enquanto as demais, 50 μm. Todas possuem casca de 125 μm.
- Os cabos de fibra ótica monomodo devem seguir a seguinte classificação de desempenho:
 - OS1: atenuação máxima de 1,0 dB/km em 1.310 nm e 1.550 nm
 - OS2: atenuação máxima de 0,4 dB/km em 1.310 nm, 1.383 nm e 1.550 nm

Fibra óptica Conectores e acessórios

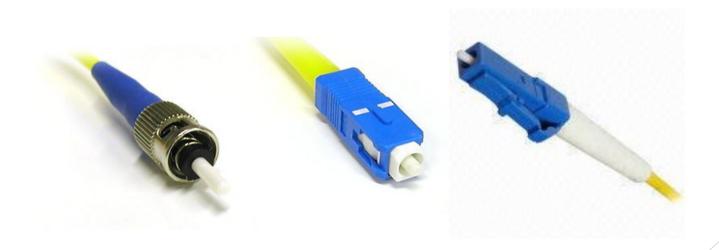

Agenda

- Tipos de cabos de fibra óptica
- ► Tipos de conectores
- Conectorização
- Adaptadores
- **DIO**
- Amplificador óptico
- Emendas ópticas
- Fontes de luz

Cabos compactos (tight)


- Possui material duro entre a fibra e a caba externa
- Limita a flexão da fibra dentro do cabo
- Para utilização interna

Tipos: cabos soltos (loose)



- Possui uma geleia entre a fibra e a capa externa permitindo contração e expansão
- Geleia evita entrada de umidade no cabo
- Utilizado em instalações externas subterrâneas e horizontais
- Não se deve entrar com mais de 15m na edificação pelo risco de propagação de chamas

Conectores

Em fibra óptica há uma grande variedade de conectores que pouco a pouco estão sendo padronizados pelo que é recomendado pela norma. Os mais comuns de se encontrar no mercado nacional são o ST, SC e LC.

https://en.wikipedia.org/wiki/Optical_fiber_connector

Conectores: ST

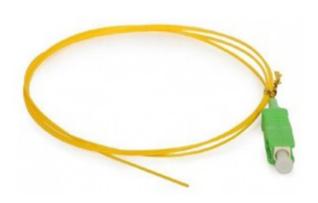
- Apresenta acoplamento tipo baioneta
- Engate rápido com trava por deslocamento (semelhante ao BNC)
- Fibra é colocada dentro do ferrolho (2.5 mm) e colada
- O ferrolho da suporte mecânico e garante que a fibra fique na posição adequada para conexão
- Não é recomendado pela norma

Conectores: SC

- Recomendando pela norma EIA/TIA 568
- Fibra é colocada dentro do ferrolho (2.5 mm) e colada
- O ferrolho da suporte mecânico e garante que a fibra fique na posição adequada para conexão

Conectores: LC

- Conectores mais compactos, facilitam a conexão de uma volume maior de cabos
- Fibra fica colada em um ferrolho de 1.25mm de diâmetro


Adaptadores

- Para compatibilização desta extensa variedade de conectores que se encontra no mercado há diversos tipos de adaptadores
- Há modelos de emenda e de "conversores mecânicos"

Conectorização em fibra

- A montagem de um conector é difícil de ser realizada em campo pois normalmente envolve uso de cola e um delicado polimento
- Para resolver esta questão normalmente se faz fusão com pigtails

Distribuidor Óptico (DIO)

- DIOs são utilizados para acomodar o proteger a fibra nos distribuidores
- Evita esforços mecânicos e facilita as conexões
- Internamente a fibra percorre caminhos que respeitam a curvatura máxima

São normalmente instalados em racks 19", mas há também outros formatos

Vídeos

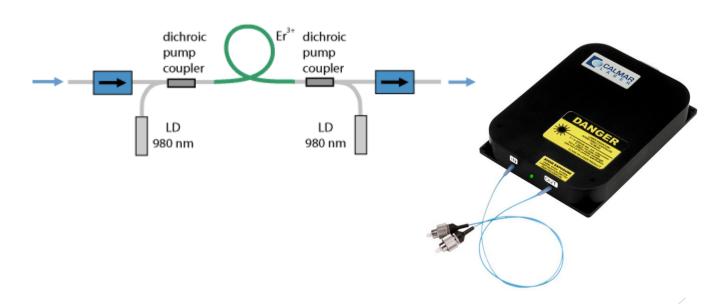
Cabos tight e loose

https://www.youtube.com/watch?v=PeJP0zwp4cU

Conectores

https://www.youtube.com/watch?v=9T0AzeWM_F4

Montagem de um conector


https://www.youtube.com/watch?v=OosMQHQIY40

Amplificador Óptico

- Os amplificadores com dopagem de érbio EDFA (Erbium-Doped Fiber Amplifier) são bastante comuns, realizam a amplificação unicamente no domínio óptico
- Há ainda outros tipos de amplificadores como SOA (Semiconductor Optical Amplifier) e Raman

Erbium-Doped Fiber Amplifier

- Fontes de luz com comprimentos de 980 nm e 1450 nm excitam os íons de érbio (Er3+) que liberam fótons que fortalecem o sinal recebido
- A configuração pode ser de aplicação de luz para em apenas um sentido ou ambos (no sentido do sinal e no sentido oposto)

Emendas ópticas

- A realização de emendas se faz necessário por diversos motivos entre eles para conectorização (usando pigtail), alongamento de um segmento e reparo de rompimento.
- O processo segue por padrão os seguintes passos
 - Decapagem do cabo
 - Limpeza da fibra
 - Clivagem

Emendas mecânicas

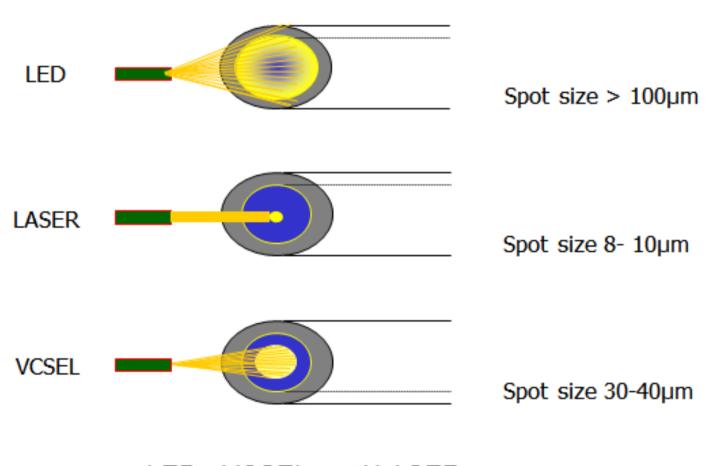
- São emendas que acondicionam as extremidades em uma luva que possui um gel que permite a passagem da luz com baixa perda
- São práticas mas devido a perda ser mais elevada normalmente são utilizadas em casos de emergência servindo de paliativo até substituição por emenda de fusão

Fusão de fibra óptica

- Funde duas extremidades da fibra, é um processo que permite emendas com baixas perdas (na ordem de 0.01dB
- Algumas máquinas permitem a realização do processo quase que automático, com funções de descascar, clivar, fundir e aquecer a luva de emenda.



- LED
 - Light Emitting Diode
 - Comprimento de onda de 850 nm e 1310 nm
 - Vida útil maior
 - Spot size superior a 100um
 - Taxa de transmissão limitada a 622 Mbps



- **VCSEL**
 - Vertical Cavity Surface Emmiting Laser
 - Comprimento de onda de 850 nm e 1310 nm
 - Baixo custo de fabricação
 - Spot size de 30 a 40 um
 - Taxa de transmissão limitada a 10 Gbps

- LASER
 - Light Amplification by Stimulated Emission of Radiation
 - Comprimento de onda de 1310 nm e 15<mark>50 nm</mark>
 - Baixo custo de fabricação
 - Spot size de 8 a 10 um
 - Taxa de transmissão limitada a 10 Gbps

LEDs, VCSELs and LASERs

Vídeos

Amplificador óptico EDFA

https://www.youtube.com/watch?v=4RBcELrTfiM

Fusão com Swift F1

https://www.youtube.com/watch?v=EfrmwN2YV-4

Obrigado pela atenção e participação!