1.	Qual a diferença entre um endereço físico e um endereço virtual/lógico?
2.	Explique a utilização dos registradores base e limite em segmentação.
3.	 Marque verdadeiro (V) ou falso (F) sobre gerenciamento de memória. Corrija os itens falsos. Itens 'falsos' não corrigidos serão considerados como resposta errada. a) () Em um sistema com com paginação as CPUs geram endereços físicos. b) () Em um ambiente com paginação, um programa usa endereços lógicos. c) () A MMU é responsável pela tradução de endereços físicos em endereços lógicos durante a execução de um programa. d) () O sistema operacional mantém uma tabela de páginas distinta para cada thread. e) () A MMU utiliza uma TLB (Translation Lookaside Buffer), que é uma cache de tradução de endereços recentes, para acelerar o processo de tradução de endereços.
4.	Desenhe um esquema representando o fluxo de tradução de endereços em um mecanismo de paginação. Este desenho deve conter os componentes CPU, MMU e memória. Também deve estar ali representada a tabela de páginas, apresentando seu número de entradas. Considere um sistema de 16 bits utilizando páginas de 4 KB, com paginação em um nível. (Obs.: Leia a questão seguinte para encaixar a resposta neste desenho).
5.	No cenário da questão anterior, configure a tabela de páginas para permitir a tradução correta dos seguintes endereços (Lógico => Físico). a) 0x0000 => 0xA000 b) 0x1000 => 0x5000 c) 0x8000 => 0x8000 d) 0x2004 => 0xA004
6.	 Marque verdadeiro (V) ou falso (F) sobre gerenciamento de memória. Corrija os itens falsos. Itens 'falsos' não corrigidos serão considerados como resposta errada. a) () Dirt bit é utilizado como bit de referência para saber se uma página foi acessada somente. b) () A política segunda chance para substituição de páginas, é uma alternativa saudável por economiza recursos e prover S.O's mais sustentáveis e ecologicamente viáveis, em comparação a política FIFO. c) () O algoritmo segunda chance é apenas uma aproximação da política LRU, que visa 'permitir' uma segunda chance para as páginas permanecerem na memória caso essas

estejam com seu bit de modificação 'limpo' (com valor 0).

- d) () O algoritmo baseado nos bits de referência e modificação priorizam páginas não modificadas e não acessadas recentemente, para serem páginas vítimas.
- e) () O algoritmo segunda chance utiliza em sua implementação uma fila FIFO elíptica e uma palavra de referência de 128 bits.
- 7. Marque as alternativas verdadeiras e calcule a somatória.
 - (1) Técnicas de gerenciamento de memória visam reduzir 'Page Faults'.
 - (2) Paginação por demanda visa atribuir páginas a processos somente quando falta espaço em memória.
 - (4) Paginação segmentada é uma técnica que visa, entre outras funcionalidades, reduzir a fragmentação. Porém é uma solução puramente teórica não sendo utilizada na prática.
 - (8) Fragmentação externa é o tipo de fragmentação geralmente provocada pela páginação.
 - (16) Paginação e segmentação implementadas por TLB's possuem seu desempenho dependente da taxa de acertos.
 - (32) Endereços gerados em tempo de compilação são passíveis de relocação. Soma=
- 8. Sobre page faults (pf) no acesso a uma página explique:
 - a) A relação entre page faults e desempenho, abordando qual o motivo da queda de desempenho causado por uma page fault.
 - b) Em sua opinião como poderiamos reduzir a probabilidade de pf em um sistema?
 - c) Qual o significado de interferência de processos?
- 9. Explique a diferença entre o LRU e o algoritmo ótimo de substituição de páginas.

10. Para cada um dos endereços virtuais abaixo, calcule o número da página virtual e o deslocamento considerando páginas de 4KB e 8KB e endereçamento de 16 bits. Use o espaço abaixo para rascunho e coloque as respostas na tabela.

Endereço	Páginas de 4KB		Páginas de 8KB	
lógico	Número da página	Deslocamento	Número da página	Deslocamento
0x4020				
0x8000				
0xB0A0				